-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathdemo12.py
68 lines (50 loc) · 2.01 KB
/
demo12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import pandas as pd
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from lightautoml.automl.presets.tabular_presets import TabularAutoML
from lightautoml.tasks import Task
from lightautoml.validation.np_iterators import TimeSeriesIterator
################################
# Features:
# - working with np.arrays
# - working with file
# - custom time series split
# - parallel/batch inference
################################
np.random.seed(42)
data = pd.read_csv("./data/sampled_app_train.csv")
data["BIRTH_DATE"] = (np.datetime64("2018-01-01") + data["DAYS_BIRTH"].astype(np.dtype("timedelta64[D]"))).astype(str)
data["EMP_DATE"] = (
np.datetime64("2018-01-01") + np.clip(data["DAYS_EMPLOYED"], None, 0).astype(np.dtype("timedelta64[D]"))
).astype(str)
data["report_dt"] = np.datetime64("2018-01-01")
data["constant"] = 1
data["allnan"] = np.nan
data.drop(["DAYS_BIRTH", "DAYS_EMPLOYED"], axis=1, inplace=True)
train, test = train_test_split(data, test_size=2000, random_state=42)
# create time series iterator that is passed as cv_func
cv_iter = TimeSeriesIterator(train["EMP_DATE"].astype(np.datetime64), n_splits=5, sorted_kfold=False)
# train dataset may be passed as dict of np.ndarray
train = {
"data": train[["AMT_CREDIT", "AMT_ANNUITY"]].values,
"target": train["TARGET"].values,
}
task = Task(
"binary",
)
automl = TabularAutoML(
task=task,
timeout=200,
)
oof_pred = automl.fit_predict(train, train_features=["AMT_CREDIT", "AMT_ANNUITY"], cv_iter=cv_iter)
# prediction can be made on file by
test.to_csv("temp_test_data.csv", index=False)
test_pred = automl.predict("temp_test_data.csv", batch_size=100, n_jobs=4)
print("Check scores...")
oof_prediction = oof_pred.data[:, 0]
not_empty = np.logical_not(np.isnan(oof_prediction))
print(f'OOF score: {roc_auc_score(train["target"][not_empty], oof_prediction[not_empty])}')
print(f'TEST score: {roc_auc_score(test["TARGET"].values, test_pred.data[:, 0])}')