-
Notifications
You must be signed in to change notification settings - Fork 152
/
Copy pathdemo.py
89 lines (75 loc) · 3.64 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import sys
import torch
from collections import OrderedDict
from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
from torch.nn.functional import upsample
import networks.deeplab_resnet as resnet
from mypath import Path
from dataloaders import helpers as helpers
modelName = 'dextr_pascal-sbd'
pad = 50
thres = 0.8
gpu_id = 0
device = torch.device("cuda:"+str(gpu_id) if torch.cuda.is_available() else "cpu")
# Create the network and load the weights
net = resnet.resnet101(1, nInputChannels=4, classifier='psp')
print("Initializing weights from: {}".format(os.path.join(Path.models_dir(), modelName + '.pth')))
state_dict_checkpoint = torch.load(os.path.join(Path.models_dir(), modelName + '.pth'),
map_location=lambda storage, loc: storage)
# Remove the prefix .module from the model when it is trained using DataParallel
if 'module.' in list(state_dict_checkpoint.keys())[0]:
new_state_dict = OrderedDict()
for k, v in state_dict_checkpoint.items():
name = k[7:] # remove `module.` from multi-gpu training
new_state_dict[name] = v
else:
new_state_dict = state_dict_checkpoint
net.load_state_dict(new_state_dict)
net.eval()
net.to(device)
# Read image and click the points
image = np.array(Image.open('ims/dog-cat.jpg'))
plt.ion()
plt.axis('off')
plt.imshow(image)
plt.title('Click the four extreme points of the objects\nHit enter when done (do not close the window)')
results = []
with torch.no_grad():
while 1:
extreme_points_ori = np.array(plt.ginput(4, timeout=0)).astype(np.int)
if extreme_points_ori.shape[0] < 4:
if len(results) > 0:
helpers.save_mask(results, 'demo.png')
print('Saving mask annotation in demo.png and exiting...')
else:
print('Exiting...')
sys.exit()
# Crop image to the bounding box from the extreme points and resize
bbox = helpers.get_bbox(image, points=extreme_points_ori, pad=pad, zero_pad=True)
crop_image = helpers.crop_from_bbox(image, bbox, zero_pad=True)
resize_image = helpers.fixed_resize(crop_image, (512, 512)).astype(np.float32)
# Generate extreme point heat map normalized to image values
extreme_points = extreme_points_ori - [np.min(extreme_points_ori[:, 0]), np.min(extreme_points_ori[:, 1])] + [pad,
pad]
extreme_points = (512 * extreme_points * [1 / crop_image.shape[1], 1 / crop_image.shape[0]]).astype(np.int)
extreme_heatmap = helpers.make_gt(resize_image, extreme_points, sigma=10)
extreme_heatmap = helpers.cstm_normalize(extreme_heatmap, 255)
# Concatenate inputs and convert to tensor
input_dextr = np.concatenate((resize_image, extreme_heatmap[:, :, np.newaxis]), axis=2)
inputs = torch.from_numpy(input_dextr.transpose((2, 0, 1))[np.newaxis, ...])
# Run a forward pass
inputs = inputs.to(device)
outputs = net.forward(inputs)
outputs = upsample(outputs, size=(512, 512), mode='bilinear', align_corners=True)
outputs = outputs.to(torch.device('cpu'))
pred = np.transpose(outputs.data.numpy()[0, ...], (1, 2, 0))
pred = 1 / (1 + np.exp(-pred))
pred = np.squeeze(pred)
result = helpers.crop2fullmask(pred, bbox, im_size=image.shape[:2], zero_pad=True, relax=pad) > thres
results.append(result)
# Plot the results
plt.imshow(helpers.overlay_masks(image / 255, results))
plt.plot(extreme_points_ori[:, 0], extreme_points_ori[:, 1], 'gx')