-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpipeline.py
88 lines (72 loc) · 2.43 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
try:
from .utils import default
except:
from utils import default
import numpy as np
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
current_path = os.path.abspath(__file__)
SRC_ROOT = os.path.dirname(current_path)
ROOT = os.path.dirname(SRC_ROOT)
MODEL_PATH = default(os.environ.get("MODEL_PATH"), os.path.join(SRC_ROOT, "models"))
LOG_PATH = default(os.environ.get("LOG_PATH"), os.path.join(SRC_ROOT, "logs"))
DATA_PATH = default(os.environ.get("DATA_PATH"), os.path.join(ROOT, "data"))
FIG_PATH = default(os.environ.get("FIG_PATH"), os.path.join(ROOT, "figures"))
for p in [MODEL_PATH, LOG_PATH, DATA_PATH, FIG_PATH]:
if not os.path.exists(p):
os.makedirs(p)
EPOCH_SCHEDULERS = [
"ReduceLROnPlateau",
"StepLR",
"MultiplicativeLR",
"MultiStepLR",
"ExponentialLR",
"LambdaLR",
]
def train_batch_ns(
model, loss_func, data, optimizer, device, grad_clip=0, fname='vorticity',
normalizer=None
):
optimizer.zero_grad()
a = data[0][fname].to(device)
u = data[1][fname].to(device)
out = model(a)
if normalizer is not None:
out = normalizer[fname].inverse_transform(out)
u = normalizer[fname].inverse_transform(u)
loss = loss_func(out, u)
loss.backward()
if grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
optimizer.step()
return loss
def eval_epoch_ns(model, metric_func, valid_loader, device,
fname='vorticity',
out_steps=None,
normalizer=None,
return_output=False):
model.eval()
metric_vals = []
preds = []
targets = []
with torch.no_grad():
for _, data in enumerate(valid_loader):
a = data[0][fname].to(device)
u = data[1][fname].to(device)
out = model(a, out_steps=out_steps)
if normalizer is not None:
out = normalizer[fname].inverse_transform(out)
u = normalizer[fname].inverse_transform(u)
if return_output:
preds.append(out.cpu())
targets.append(u.cpu())
metric_val = metric_func(out, u)
metric_vals.append(metric_val.item())
metric = np.mean(np.asarray(metric_vals), axis=0)
if return_output:
return metric, torch.cat(preds), torch.cat(targets)
else:
return metric