You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
brain dynamics. *Trends in Cognitive Science* 8:204-210. [PDF](http://sccn.ucsd.edu/~scott/pdf/TICS04_Preprint.pdf).
@@ -37,26 +37,41 @@ cortex.</i>
37
37
38
38
Delorme, A., Sejnowski, T., Makeig, S. Improved rejection of artifacts from EEG data using high-order <br>statistics and independent component analysis. Neuroimage. 2007; 34, 1443-1449. [PDF](https://sccn.ucsd.edu/githubwiki/files/neuroimage2007_reformated.pdf).
39
39
<blockquote>
40
-
<i>This paper demonstrates the superiority of using ICA for rejecting EEG artifacts.</i>
40
+
<i>This paper demonstrates the advantages of using ICA for rejecting EEG artifacts.</i>
41
41
</blockquote>
42
42
43
43
Onton J, Delorme, A., Makeig, S. Frontal midline EEG dynamics during working memory. NeuroImage. 2005;27, 341-356. [PDF](https://sccn.ucsd.edu/githubwiki/files/onton_fmtheta_published.pdf).
44
44
<blockquote>
45
-
<i>An early illustration of the type of processing possible with EEGLAB, including ICA component clustering.</i>
45
+
<i>An early application of ICA to the study of time/frequency dynamics, showing the value of ICA spatial filtering for resolving brain sources, etc.</i>
46
46
</blockquote>
47
47
48
-
## EEGLAB plugin references
48
+
S. Makeig, A.J. Bell, T-P. Jung, and T.J. Sejnowski, Independent component analysis of electroencephalographic data, In: D. Touretzky, M. Mozer and M. Hasselmo (Eds). Advances in Neural Information Processing Systems 8:145-151, MIT Press, Cambridge, MA 1996. [PDF](https://sccn.ucsd.edu/~scott/pdf/ICA_NIPS96.pdf).
49
+
<blockquote>
50
+
<i>The first paper demonstrating the benefits of applying ICA decomposition to EEG data.</i>
brain dynamics. *Trends in Cognitive Science* 8:204-210. [PDF](http://sccn.ucsd.edu/~scott/pdf/TICS04_Preprint.pdf).
57
+
<blockquote>
58
+
<i>Summarizes benefits and pitfalls of combining ICA, time/frequency analysis, and ERP-image visualization</i>.
59
+
</blockquote>
60
+
61
+
Makeig, S, Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones," Electroencephalogr clin Neurophysiol, 86:283-293, 1993. [PDF](https://apps.dtic.mil/dtic/tr/fulltext/u2/a272241.pdf).
62
+
<blockquote>
63
+
<i>The first paper demonstrating the event-related spectral perturbation (ERSP) measure.</i>
64
+
</blockquote>
65
+
66
+
## EEGLAB plug-in references
67
+
68
+
Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A,
69
+
Makeig S. (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing. *Computat Intelligence Neurosci* 2011:130714, doi: 10.1155/2011/130714. [HTML](http://www.hindawi.com/journals/cin/2011/130714/).
49
70
50
-
- Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A,
51
-
Makeig S. (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for
Pernet CR, Chauveauy N, Gaspar C, Rousselet GA (2011) LIMO EEG: A toolbox for hierarchical linear modeling of electroencephalographic data. *Computat Intelligence Neurosci* 2011:831409, doi: 10.1155/2011/831409. [HTML](http://www.hindawi.com/journals/cin/2011/831409/).
53
72
54
-
- Pernet CR, Chauveauy N, Gaspar C, Rousselet GA (2011) LIMO EEG: A
55
-
toolbox for hierarchical linear modeling of electroencephalographic
Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 198:181-197, 2019. [PDF](https://pubmed.ncbi.nlm.nih.gov/31103784/).
57
74
58
-
- Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 198:181-197, 2019.[PDF](https://pubmed.ncbi.nlm.nih.gov/31103784/).
75
+
Zeynep Akalin Acar & Scott Makeig, Neuroelectromagnetic Forward Head Modeling Toolbox J Neurosci Meth doi:10.1016/jneumeth.2010.04.031[PDF](https://sccn.ucsd.edu/~scott/pdf/Zeynep_NFT_Toolbox10.pdf).
59
76
60
-
- Martinez-Cancino, R., Heng, J., Delorme, A., Kreutz-Delgado, K.,
61
-
Sotero, R.C. Makeig, S. Measuring transient phase-amplitude coupling using local mutual information.
Martinez-Cancino, R., Heng, J., Delorme, A., Kreutz-Delgado, K., Sotero, R.C. Makeig, S. Measuring transient phase-amplitude coupling using local mutual information. NeuroImage, 2018. [PDF](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342491/).
0 commit comments