Skip to content

Commit 0709a09

Browse files
committed
Merge branch 'master' of github.com:sccn/sccn.github.io
2 parents ebc2e1a + d533387 commit 0709a09

File tree

1 file changed

+29
-14
lines changed

1 file changed

+29
-14
lines changed

others/EEGLAB_References.md

+29-14
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ these papers, plus the extensive EEGLAB tutorial and help
1616
facilities, for instructions and examples of their use.
1717
</blockquote>
1818

19-
## EEGLAB ICA and time/frequency methods introductions
19+
## EEGLAB ICA methods introductions
2020

2121
Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related
2222
brain dynamics. *Trends in Cognitive Science* 8:204-210. [PDF](http://sccn.ucsd.edu/~scott/pdf/TICS04_Preprint.pdf).
@@ -37,26 +37,41 @@ cortex.</i>
3737

3838
Delorme, A., Sejnowski, T., Makeig, S. Improved rejection of artifacts from EEG data using high-order <br>statistics and independent component analysis. Neuroimage. 2007; 34, 1443-1449. [PDF](https://sccn.ucsd.edu/githubwiki/files/neuroimage2007_reformated.pdf).
3939
<blockquote>
40-
<i>This paper demonstrates the superiority of using ICA for rejecting EEG artifacts.</i>
40+
<i>This paper demonstrates the advantages of using ICA for rejecting EEG artifacts.</i>
4141
</blockquote>
4242

4343
Onton J, Delorme, A., Makeig, S. Frontal midline EEG dynamics during working memory. NeuroImage. 2005;27, 341-356. [PDF](https://sccn.ucsd.edu/githubwiki/files/onton_fmtheta_published.pdf).
4444
<blockquote>
45-
<i>An early illustration of the type of processing possible with EEGLAB, including ICA component clustering.</i>
45+
<i>An early application of ICA to the study of time/frequency dynamics, showing the value of ICA spatial filtering for resolving brain sources, etc.</i>
4646
</blockquote>
4747

48-
## EEGLAB plugin references
48+
S. Makeig, A.J. Bell, T-P. Jung, and T.J. Sejnowski, Independent component analysis of electroencephalographic data, In: D. Touretzky, M. Mozer and M. Hasselmo (Eds). Advances in Neural Information Processing Systems 8:145-151, MIT Press, Cambridge, MA 1996. [PDF](https://sccn.ucsd.edu/~scott/pdf/ICA_NIPS96.pdf).
49+
<blockquote>
50+
<i>The first paper demonstrating the benefits of applying ICA decomposition to EEG data.</i>
51+
</blockquote>
52+
53+
## EEGLAB time/frequency methods introductions
54+
55+
Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related
56+
brain dynamics. *Trends in Cognitive Science* 8:204-210. [PDF](http://sccn.ucsd.edu/~scott/pdf/TICS04_Preprint.pdf).
57+
<blockquote>
58+
<i>Summarizes benefits and pitfalls of combining ICA, time/frequency analysis, and ERP-image visualization</i>.
59+
</blockquote>
60+
61+
Makeig, S, Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones," Electroencephalogr clin Neurophysiol, 86:283-293, 1993. [PDF](https://apps.dtic.mil/dtic/tr/fulltext/u2/a272241.pdf).
62+
<blockquote>
63+
<i>The first paper demonstrating the event-related spectral perturbation (ERSP) measure.</i>
64+
</blockquote>
65+
66+
## EEGLAB plug-in references
67+
68+
Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A,
69+
Makeig S. (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing. *Computat Intelligence Neurosci* 2011:130714, doi: 10.1155/2011/130714. [HTML](http://www.hindawi.com/journals/cin/2011/130714/).
4970

50-
- Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A,
51-
Makeig S. (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for
52-
advanced EEG processing. [HTML](http://www.hindawi.com/journals/cin/2011/130714/). *Computat Intelligence Neurosci* 2011:130714, doi: 10.1155/2011/130714.
71+
Pernet CR, Chauveauy N, Gaspar C, Rousselet GA (2011) LIMO EEG: A toolbox for hierarchical linear modeling of electroencephalographic data. *Computat Intelligence Neurosci* 2011:831409, doi: 10.1155/2011/831409. [HTML](http://www.hindawi.com/journals/cin/2011/831409/).
5372

54-
- Pernet CR, Chauveauy N, Gaspar C, Rousselet GA (2011) LIMO EEG: A
55-
toolbox for hierarchical linear modeling of electroencephalographic
56-
data. [HTML](http://www.hindawi.com/journals/cin/2011/831409/). *Computat Intelligence Neurosci* 2011:831409, doi: 10.1155/2011/831409.
73+
Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 198:181-197, 2019. [PDF](https://pubmed.ncbi.nlm.nih.gov/31103784/).
5774

58-
- Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 198:181-197, 2019. [PDF](https://pubmed.ncbi.nlm.nih.gov/31103784/).
75+
Zeynep Akalin Acar & Scott Makeig, Neuroelectromagnetic Forward Head Modeling Toolbox J Neurosci Meth doi:10.1016/jneumeth.2010.04.031 [PDF](https://sccn.ucsd.edu/~scott/pdf/Zeynep_NFT_Toolbox10.pdf).
5976

60-
- Martinez-Cancino, R., Heng, J., Delorme, A., Kreutz-Delgado, K.,
61-
Sotero, R.C. Makeig, S. Measuring transient phase-amplitude coupling using local mutual information.
62-
NeuroImage, 2018. [PDF](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342491/).
77+
Martinez-Cancino, R., Heng, J., Delorme, A., Kreutz-Delgado, K., Sotero, R.C. Makeig, S. Measuring transient phase-amplitude coupling using local mutual information. NeuroImage, 2018. [PDF](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342491/).

0 commit comments

Comments
 (0)