-
Notifications
You must be signed in to change notification settings - Fork 5
/
argparser.py
531 lines (480 loc) · 17.8 KB
/
argparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import argparse
import json
import tasks
def modify_command_options(opts):
if opts.dataset == 'voc':
opts.num_classes = 21
elif opts.dataset == 'ade':
opts.num_classes = 151
elif opts.dataset == "cityscapes":
opts.num_classes = 17
elif opts.dataset == "cityscapes_domain":
opts.num_classes = 19
elif opts.dataset == "cityscapes_classdomain":
opts.num_classes = 19
else:
raise NotImplementedError(f"Unknown dataset: {opts.dataset}")
if not opts.visualize:
opts.sample_num = 0
if opts.method is not None:
if opts.method == 'FT':
pass
if opts.method == 'LWF':
opts.loss_kd = 100
if opts.method == 'LWF-MC':
opts.icarl = True
opts.icarl_importance = 10
if opts.method == 'ILT':
opts.loss_kd = 100
opts.loss_de = 100
if opts.method == 'EWC':
opts.regularizer = "ewc"
opts.reg_importance = 100
if opts.method == 'RW':
opts.regularizer = "rw"
opts.reg_importance = 100
if opts.method == 'PI':
opts.regularizer = "pi"
opts.reg_importance = 100
if opts.method == 'MiB':
opts.loss_kd = 10
opts.unce = True
opts.unkd = True
opts.init_balanced = True
if opts.method == 'PLOP':
opts.pod = "local"
opts.pod_factor = 0.01
opts.pod_logits = True
opts.pod_options = {"switch": {"after": {"extra_channels": "sum", "factor": 0.0005, "type": "local"}}}
opts.pseudo = "entropy"
opts.threshold = 0.001
opts.classif_adaptive_factor = True
opts.init_balanced = True
opts.no_overlap = not opts.overlap
opts.no_cross_val = not opts.cross_val
return opts
def get_argparser():
parser = argparse.ArgumentParser()
# Performance Options
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--random_seed", type=int, default=42, help="random seed (default: 42)")
parser.add_argument("--num_workers", type=int, default=1, help='number of workers (default: 1)')
# Datset Options
parser.add_argument("--data_root", type=str, default='data', help="path to Dataset")
parser.add_argument(
"--dataset",
type=str,
default='voc',
choices=['voc', 'ade', 'cityscapes_domain'],
help='Name of dataset'
)
parser.add_argument("--num_classes", type=int, default=None, help="num classes (default: None)")
parser.add_argument(
"--dont_predict_bg", action="store_true", default=False, help="Useful for cityscapes"
)
# Method Options
# BE CAREFUL USING THIS, THEY WILL OVERRIDE ALL THE OTHER PARAMETERS.
parser.add_argument(
"--method",
type=str,
default=None,
choices=['FT', 'LWF', 'LWF-MC', 'ILT', 'EWC', 'RW', 'PI', 'MiB', 'PLOP'],
help="The method you want to use. BE CAREFUL USING THIS, IT MAY OVERRIDE OTHER PARAMETERS."
)
parser.add_argument("--strict_weights", action="store_false", default=True)
parser.add_argument("--base_weights", action="store_true", default=False)
# Train Options
parser.add_argument("--epochs", type=int, default=30, help="epoch number (default: 30)")
parser.add_argument(
"--fix_bn",
action='store_true',
default=False,
help='fix batch normalization during training (default: False)'
)
parser.add_argument("--batch_size", type=int, default=4, help='batch size (default: 4)')
parser.add_argument("--crop_size", type=int, default=512, help="crop size (default: 513)")
parser.add_argument(
"--lr", type=float, nargs="+", default=[0.007], help="learning rate (default: 0.007)"
)
parser.add_argument(
"--lr_old", type=float, default=None, help="learning rate for old classes weights."
)
parser.add_argument(
"--momentum", type=float, default=0.9, help='momentum for SGD (default: 0.9)'
)
parser.add_argument(
"--weight_decay", type=float, default=1e-4, help='weight decay (default: 1e-4)'
)
parser.add_argument(
"--lr_policy",
type=str,
default='poly',
choices=['poly', 'step'],
help="lr schedule policy (default: poly)"
)
parser.add_argument(
"--lr_decay_step", type=int, default=5000, help="decay step for stepLR (default: 5000)"
)
parser.add_argument(
"--lr_decay_factor", type=float, default=0.1, help="decay factor for stepLR (default: 0.1)"
)
parser.add_argument(
"--lr_power", type=float, default=0.9, help="power for polyLR (default: 0.9)"
)
parser.add_argument(
"--bce", default=False, action='store_true', help="Whether to use BCE or not (default: no)"
)
# Validation Options
parser.add_argument("--test_on_val", default=False, action="store_true")
parser.add_argument(
"--val_on_trainset",
action='store_true',
default=False,
help="enable validation on train set (default: False)"
)
parser.add_argument(
"--cross_val",
action='store_true',
default=False,
help="If validate on training or on validation (default: Train)"
)
parser.add_argument(
"--crop_val",
action='store_false',
default=True,
help='do crop for validation (default: True)'
)
# Logging Options
parser.add_argument(
"--logdir", type=str, default='./logs', help="path to Log directory (default: ./logs)"
)
parser.add_argument(
"--name",
type=str,
default='Experiment',
help="name of the experiment - to append to log directory (default: Experiment)"
)
parser.add_argument(
"--sample_num",
type=int,
default=0,
help='number of samples for visualization (default: 0)'
)
parser.add_argument("--debug", action='store_true', default=False, help="verbose option")
parser.add_argument(
"--visualize",
action='store_false',
default=True,
help="visualization on tensorboard (def: Yes)"
)
parser.add_argument(
"--print_interval", type=int, default=10, help="print interval of loss (default: 10)"
)
parser.add_argument(
"--val_interval", type=int, default=30, help="epoch interval for eval (default: 1)"
)
parser.add_argument(
"--ckpt_interval", type=int, default=1, help="epoch interval for saving model (default: 1)"
)
# Model Options
parser.add_argument(
"--backbone",
type=str,
default='resnet101',
choices=['resnet50', 'resnet101'],
help='backbone for the body (def: resnet50)'
)
parser.add_argument(
"--output_stride",
type=int,
default=16,
choices=[8, 16],
help='stride for the backbone (def: 16)'
)
parser.add_argument(
"--no_pretrained",
action='store_true',
default=False,
help='Wheather to use pretrained or not (def: True)'
)
parser.add_argument(
"--norm_act",
type=str,
default="iabn_sync",
choices=['iabn_sync', 'iabn', 'abn', 'std', 'iabn_sync_test'],
help='Which BN to use (def: abn_sync'
)
parser.add_argument(
"--fusion-mode",
metavar="NAME",
type=str,
choices=["mean", "voting", "max"],
default="mean",
help="How to fuse the outputs. Options: 'mean', 'voting', 'max'"
)
parser.add_argument(
"--pooling",
type=int,
default=32,
help='pooling in ASPP for the validation phase (def: 32)'
)
# Test and Checkpoint options
parser.add_argument(
"--test",
action='store_true',
default=False,
help="Whether to train or test only (def: train and test)"
)
parser.add_argument(
"--ckpt",
default=None,
type=str,
help="path to trained model. Leave it None if you want to retrain your model"
)
# Parameters for Knowledge Distillation of ILTSS (https://arxiv.org/abs/1907.13372)
parser.add_argument(
"--freeze",
action='store_true',
default=False,
help="Use this to freeze the feature extractor in incremental steps"
)
parser.add_argument(
"--loss_de",
type=float,
default=0., # Distillation on Encoder
help="Set this hyperparameter to a value greater than "
"0 to enable distillation on Encoder (L2)"
)
parser.add_argument(
"--loss_kd",
type=float,
default=0., # Distillation on Output
help="Set this hyperparameter to a value greater than "
"0 to enable Knowlesge Distillation (Soft-CrossEntropy)"
)
# Parameters for EWC, RW, and SI (from Riemannian Walks https://arxiv.org/abs/1801.10112)
parser.add_argument(
"--regularizer",
default=None,
type=str,
choices=['ewc', 'rw', 'pi'],
help="regularizer you want to use. Default is None"
)
parser.add_argument(
"--reg_importance",
type=float,
default=1.,
help="set this par to a value greater than 0 to enable regularization"
)
parser.add_argument(
"--reg_alpha",
type=float,
default=0.9,
help="Hyperparameter for RW and EWC that controls the update of Fisher Matrix"
)
parser.add_argument(
"--reg_no_normalize",
action='store_true',
default=False,
help="If EWC, RW, PI must be normalized or not"
)
parser.add_argument(
"--reg_iterations",
type=int,
default=10,
help="If RW, the number of iterations after each the update of the score is done"
)
# Arguments for ICaRL (from https://arxiv.org/abs/1611.07725)
parser.add_argument(
"--icarl", default=False, action='store_true', help="If enable ICaRL or not (def is not)"
)
parser.add_argument(
"--icarl_importance",
type=float,
default=1.,
help="the regularization importance in ICaRL (def is 1.)"
)
parser.add_argument(
"--icarl_disjoint",
action='store_true',
default=False,
help="Which version of icarl is to use (def: combined)"
)
parser.add_argument(
"--icarl_bkg",
action='store_true',
default=False,
help="If use background from GT (def: No)"
)
# METHODS
parser.add_argument(
"--init_balanced",
default=False,
action='store_true',
help="Enable Background-based initialization for new classes"
)
parser.add_argument(
"--unkd",
default=False,
action='store_true',
help="Enable Unbiased Knowledge Distillation instead of Knowledge Distillation"
)
parser.add_argument(
"--alpha",
default=1.,
type=float,
help="The parameter to hard-ify the soft-labels. Def is 1."
)
parser.add_argument(
"--unce",
default=False,
action='store_true',
help="Enable Unbiased Cross Entropy instead of CrossEntropy"
)
# Incremental parameters
parser.add_argument(
"--task",
type=str,
default="19-1",
choices=tasks.get_task_list(),
help="Task to be executed (default: 19-1)"
)
parser.add_argument(
"--step",
type=int,
nargs="+",
default=[0],
help="The incremental step in execution (default: 0)"
)
parser.add_argument(
"--no_mask",
action='store_true',
default=False,
help="Use this to not mask the old classes in new training set"
)
parser.add_argument(
"--data_masking",
type=str,
default="current",
choices=["current", "current+old", "all", "new"]
)
parser.add_argument(
"--overlap",
action='store_true',
default=False,
help="Use this to not use the new classes in the old training set"
)
parser.add_argument(
"--step_ckpt",
default=None,
type=str,
help="path to trained model at previous step. Leave it None if you want to use def path"
)
parser.add_argument('--opt_level', type=str, choices=['O0', 'O1', 'O2', 'O3'], default='O0')
# Pseudo-labeling
parser.add_argument(
"--pseudo",
type=str,
default=None,
help="Pseudo-labeling method." +
", ".join(["naive", "confidence", "threshold_5", "threshold_8", "median", "entropy"])
)
parser.add_argument("--threshold", type=float, default=0.9)
parser.add_argument("--step_threshold", type=float, default=None)
parser.add_argument(
"--ce_on_pseudo",
default=False,
action="store_true",
help="Pseudo Labels are trained w/ CE, default criterion for others"
)
parser.add_argument("--pseudo_nb_bins", default=None, type=int)
parser.add_argument("--classif_adaptive_factor", default=False, action="store_true")
parser.add_argument("--classif_adaptive_min_factor", default=0.0, type=float)
parser.add_argument("--pseudo_soft", default=None, type=str, choices=["soft_certain", "soft_uncertain"])
parser.add_argument("--pseudo_soft_factor", default=1.0, type=float)
parser.add_argument("--pseudo_ablation", default=None, choices=["corrected_errors", "removed_errors"])
parser.add_argument("--kd_new", default=False, action="store_true", help="Apply KD only on new")
parser.add_argument(
"--checkpoint", type=str, default="./checkpoints/step"
)
parser.add_argument(
"--pod",
default=None,
type=str,
choices=[
"spatial", "local", "global"
]
)
parser.add_argument("--pod_factor", default=5., type=float)
parser.add_argument("--pod_options", default=None, type=json.loads)
parser.add_argument("--pod_prepro", default="pow", type=str)
parser.add_argument("--no_pod_schedule", default=False, action="store_true")
parser.add_argument(
"--pod_apply", default="all", type=str, choices=["all", "backbone", "deeplab"]
)
parser.add_argument("--pod_deeplab_mask", default=False, action="store_true")
parser.add_argument(
"--pod_deeplab_mask_factor", default=None, type=float, help="By default as the POD factor"
)
parser.add_argument("--deeplab_mask_downscale", action="store_true", default=False)
parser.add_argument("--pod_interpolate_last", default=False, action="store_true")
parser.add_argument(
"--pod_logits", default=False, action="store_true", help="Also apply POD to logits."
)
parser.add_argument(
"--pod_large_logits", default=False, action="store_true", help="Also apply POD to large logits."
)
parser.add_argument("--spp_scales", default=[1, 2, 4], type=int, nargs="+")
parser.add_argument("--date", default="", type=str)
parser.add_argument("--nb_background_modes", default=1, type=int)
parser.add_argument(
"--init_multimodal",
default=None,
type=str,
choices=["max", "softmax", "max_init", "softmax_init", "softmax_remove", "max_remove"]
)
parser.add_argument("--multimodal_fusion", default="sum", type=str)
parser.add_argument("--align_weight", default=None, choices=["old", "background", "all"])
parser.add_argument(
"--align_weight_frequency", default="never", choices=["never", "epoch", "task"]
)
parser.add_argument("--cosine", default=False, action="store_true")
parser.add_argument("--nca", default=False, action="store_true")
parser.add_argument("--nca_margin", default=0., type=float)
parser.add_argument("--kd_mask", default=None, choices=["oldbackground", "new"])
parser.add_argument("--kd_mask_adaptative_factor", default=False, action="store_true")
parser.add_argument(
"--disable_background",
action="store_true",
help="Remove the fake background, only for Cityscapes. DEPRECATED TO REMOVE"
)
parser.add_argument("--ignore_test_bg", action="store_true", default=False)
parser.add_argument(
"--entropy_min",
default=0.,
type=float,
help="Factor for the entropy minimization (cf advent)"
)
parser.add_argument("--entropy_min_mean_pixels", default=False, action="store_true", help="")
parser.add_argument("--kd_scheduling", default=False, action="store_true")
parser.add_argument("--sample_weights_new", default=None, type=float)
parser.add_argument("--temperature", default=1.0, type=float)
parser.add_argument("--temperature_semiold", default=1.0, type=float)
parser.add_argument("--temperature_apply", default=None, choices=["all", "new", "old"])
parser.add_argument("--code_directory", default=".")
parser.add_argument("--kd_bce_sig", action="store_true", default=False)
parser.add_argument("--kd_bce_sig_shape", choices=["trim", "sum"], default="trim")
parser.add_argument("--exkd_gt", action="store_true", default=False)
parser.add_argument("--exkd_sum", action="store_true", default=False)
parser.add_argument("--focal_loss", action="store_true", default=False)
parser.add_argument("--focal_loss_new", action="store_true", default=False)
parser.add_argument("--focal_loss_gamma", default=2, type=int)
parser.add_argument("--ce_on_new", default=False, action="store_true")
### xjw changed(for method arg) ###
parser.add_argument("--weight_fusion", default=False, action="store_true")
parser.add_argument("--fix_pre_cls", default=False, action="store_true")
parser.add_argument('--momentum_proto_cls', default=False, action="store_true")
parser.add_argument('--cls_contrastive', default=False, action="store_true")
parser.add_argument('--threshold_choice', default=False, action="store_true")
parser.add_argument('--fix_weight', default=1, type=float)
return parser