-
Notifications
You must be signed in to change notification settings - Fork 0
/
srOne.cpp
621 lines (459 loc) · 17.8 KB
/
srOne.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
#include "srOne.hpp"
#include "myUtils.hpp"
srOne::srOne(dualSys *myDual): myDual_(myDual) {
nDualVar_ = myDual_->getNumDualVar();
}
int srOne::solve() {
int qnProblemCnt = 0;
double tCompEnergies = 0;
bool contIter = true;
int cntIter = 0, cntIterTau = 0;
double rho = 0;
Eigen::VectorXd buffGrad;
Eigen::VectorXd buffDual;
double debugTime = 0;
while ((contIter) && (cntIter < maxIter_)) { //MAIN WHILE LOOP
double tFull = myUtils::getTime();
++cntIter;
++cntIterTau;
debugTime = myUtils::getTime();
myDual_->popGradEnergySP();
gradient_ = myDual_->getGradientVec();
dualVar_ = myDual_->getDualVec();
double gradNorm = myDual_->getGradNorm();
curSmoothDualEnergy_ = myDual_->getSmoothDualEnergy();
std::cout<<"srOne::solve: populating gradient and energy took "<<myUtils::getTime() - debugTime<<std::endl;
std::cout<<std::flush;
#if 0
Eigen::VectorXd backDualVar = dualVar_;
Eigen::VectorXd testGrad(nDualVar_);
double deltaVal = pow(10,-4);
for (int i = 0; i != dualVar_.size(); ++i) {
Eigen::VectorXd offsetVec = Eigen::VectorXd::Zero(nDualVar_);
offsetVec(i) = deltaVal;
Eigen::VectorXd testVar = dualVar_ + offsetVec;
double testEnergy = computeEnergySP(testVar);
testGrad(i) = (testEnergy - curSmoothDualEnergy_)/deltaVal;
bool testEnergyFlag = false;
if (testEnergyFlag) {
dualVar_ = testVar;
distributeDualVars();
popGradEnergySP();
std::cout<<"solveQuasiNewton: test energy computation "<<curSmoothDualEnergy_<<" "<<testEnergy<<std::endl;
dualVar_ = backDualVar;
distributeDualVars();
popGradEnergySP();
}
}
debugEigenVec(testGrad);
debugEigenVec(gradient_);
#endif
if (cntIterTau > 1) { //able to accumulate quasi-Newton pairs only after first iteration
debugTime = myUtils::getTime();
dualDiff_ = dualVar_ - buffDual;
gradDiff_ = gradient_ - buffGrad;
double syDot = dualDiff_.dot(gradDiff_);
Eigen::VectorXd hessSProd = getSROneHessVecProd(dualDiff_);
double sQNNorm = dualDiff_.dot(hessSProd);
std::cout<<"srOne::solve: dot product of s and y is "<<syDot<<". Damping condition is "<<0.2*sQNNorm<<std::endl;
if (qnRingOffset_ == qnMem_-1) {
qnReadyFlag_ = true;
//dampFlag = true;
}
sVecs_[qnRingOffset_] = dualDiff_;
yVecs_[qnRingOffset_] = gradDiff_;
b0Scale_ = yVecs_[qnRingOffset_].dot(yVecs_[qnRingOffset_])/yVecs_[qnRingOffset_].dot(sVecs_[qnRingOffset_]); //Nocedal-Wright
//b0Scale_ = yVecs_[qnRingOffset_].dot(sVecs_[qnRingOffset_])/yVecs_[qnRingOffset_].dot(yVecs_[qnRingOffset_]); //M. Schmidt
//b0Scale_ = yVecs_[qnRingOffset_].dot(sVecs_[qnRingOffset_])/sVecs_[qnRingOffset_].dot(sVecs_[qnRingOffset_]); //Classic approach
qnRingOffset_ = (qnRingOffset_ + 1) % qnMem_;
if (qnReadyFlag_) {
for (int i = 0; i != qnMem_; ++i) {
int iRing = (qnRingOffset_ + i) % qnMem_;
for (std::size_t j = 0; j != nDualVar_; ++j) {
S_blk_(j,i) = sVecs_[iRing][j];
Y_blk_(j,i) = yVecs_[iRing][j];
}
for (int j = 0; j != qnMem_; ++j) {
if (i > j) {
int jRing = (qnRingOffset_ + j) % qnMem_;
L_k(i,j) = sVecs_[iRing].dot(yVecs_[jRing]);
}
else {
L_k(i,j) = 0;
}
if (i == j) {
D_k(i,i) = -1*sVecs_[iRing].dot(yVecs_[iRing]);
}
else {
D_k(i,j) = 0;
}
}
}
S_blk_scale = b0Scale_*S_blk_;
Nmat_ = Y_blk_ - S_blk_scale;
Mmat_ = D_k + L_k + L_k.transpose() - S_blk_.transpose()*S_blk_scale;
}
std::cout<<"srOne::solve: populating compact structures "<<myUtils::getTime() - debugTime<<" seconds."<<std::endl;
//std::cout<<"Quasi-Newton problem count "<<qnProblemCnt<<" s-y dot global "<<syDot<<std::endl;
std::cout<<std::flush;
} //if cntIterTau
double curSmoothPrimalEnergy;
double curIntPrimalEnergy;
double curNonSmoothPrimalEnergy;
double curNonSmoothDualEnergy;
if ((cntIter-1) % 100 == 0) {
debugTime = myUtils::getTime();
curSmoothPrimalEnergy = myDual_->compSmoothPrimalEnergy(); //compSmoothPrimalEnergy();
curIntPrimalEnergy = myDual_->compIntPrimalEnergy();
curNonSmoothPrimalEnergy = myDual_->compNonSmoothPrimalEnergy();
bestNonSmoothPrimalEnergy_ = myDual_->getBestNonSmoothPrimalEnergy();
std::cout<<"solveQuasiNewton: recovering primal and computing energies took "<<myUtils::getTime()-debugTime<<" seconds."<<std::endl;
}
double dampThresh;
double dampCriterion;
switch (annealType_)
{
case 1:
dampCriterion = gradNorm;
break;
case 2:
dampCriterion = curSmoothDualEnergy_ - curSmoothPrimalEnergy;
break;
default:
dampCriterion = gradNorm;
break;
}
if (cntIter == 1) {
switch (annealType_)
{
case 1:
dampThresh = gradNorm*dampScale_;
break;
case 2:
dampThresh = (curSmoothDualEnergy_ - bestNonSmoothPrimalEnergy_)*dampScale_;
break;
default:
dampThresh = gradNorm*dampScale_;
break;
}
}
if ((annealIval_ != -1) && (dampCriterion < dampThresh) && (tau_ < tauMax_)) {
// std::cout<<"grad norm "<<gradNorm<<" grad based damp "<<dampThresh<<std::endl;
cntIterTau = 1;
tau_ *= tauScale_;
debugTime = myUtils::getTime();
myDual_->popGradEnergySP();
std::cout<<"srOne::solve: populating gradient and energy took "<<myUtils::getTime() - debugTime<<std::endl;
std::cout<<std::flush;
gradNorm = myDual_->getGradNorm();
switch (qnTypeFlag_)
{
case 0:
trustLambda_ = trustLambdaReset_;
break;
case 1:
trustLambda_ = gradNorm;
break;
}
curSmoothPrimalEnergy = compSmoothPrimalEnergy();
switch (annealType_)
{
case 1:
dampCriterion = gradNorm;
break;
case 2:
dampCriterion = curSmoothDualEnergy_ - curSmoothPrimalEnergy;
break;
default:
dampCriterion = gradNorm;
break;
}
curNonSmoothDualEnergy = compNonSmoothEnergySP();
bestIntPrimalEnergy_ = myDual_->getBestIntPrimalEnergy();
bestNonSmoothPrimalEnergy_ = myDual_->getBestNonSmoothPrimalEnergy();
switch (annealType_)
{
case 1:
dampThresh = gradNorm*dampScale_;
break;
case 2:
dampThresh = (curSmoothDualEnergy_ - bestNonSmoothPrimalEnergy_)*dampScale_;
break;
default:
dampThresh = gradNorm*dampScale_;
break;
}
if (dampThresh < dampTol_) {
dampThresh = dampTol_;
}
} //if annealing
double gradMax = myDual_->getGradMax();
if (cntIter % 1 == 0) {
std::cout<<"srOne::solve: ITERATION "<<cntIter<<" starts, with tau "<<tau_<<" and anneal threshold "<<dampThresh<<"."<<std::endl;
// std::cout<<"solveQuasiNewton: populated gradient, hessian and energy "<<(myUtils::getTime() - tGHE)<<" seconds."<<std::endl;
std::cout<<"srOne::solve: gradient l-infinity norm: "<<gradMax<<", Euclidean norm: "<<gradNorm<<". Energy: "<<curSmoothDualEnergy_<<std::endl;
std::cout<<"srOne::solve: trust region param rho "<<rho<<" updated lambda "<<trustLambda_<<std::endl;
std::cout<<"srOne::solve: Smooth dual energy "<<curSmoothDualEnergy_<<" Smooth primal energy "<<curSmoothPrimalEnergy<<" Best integral primal energy "<<bestIntPrimalEnergy_<<" Non-smooth dual energy "<<curNonSmoothDualEnergy<<" Best non-smooth primal energy "<<bestNonSmoothPrimalEnergy_<<std::endl;
std::cout<<"srOne::solve: Best smooth primal energy "<<bestSmoothPrimalEnergy_<<std::endl;
}
buffGrad = gradient_;
buffDual = dualVar_;
double exitCondition;
switch (exitType_)
{
case 1:
exitCondition = gradMax;
break;
case 2:
exitCondition = (curNonSmoothDualEnergy - bestNonSmoothPrimalEnergy_)/(std::abs(curNonSmoothDualEnergy) + std::abs(bestNonSmoothPrimalEnergy_));
break;
default:
exitCondition = gradMax;
break;
}
std::cout<<"srOne::solve: exit type is "<<exitType_<<" exit condition = "<<exitCondition<<std::endl;
if ((exitCondition > gradTol_) && (gradMax > gradTol_)) {
Eigen::VectorXd oriGrad = buffGrad;
Eigen::VectorXd eigenInter(nDualVar_);
//custom CG implementation
std::vector<Eigen::VectorXd> stepBackVec; //for back tracking: not used; line search back tracking works better.
int lsCnt = -1;
double stepNormOld = 0, stepNormNew;
std::cout<<"srOne::solve: quasi newton flag "<<qnReadyFlag_<<std::endl;
Eigen::VectorXd newDual(nDualVar_);
double nxtEnergy;
if (!qnReadyFlag_) {
newtonStep_ = -1*gradient_;
debugTime = myUtils::getTime();
newDual = dualVar_ + newtonStep_;
nxtEnergy = computeEnergySP(newDual);
lsCnt = performLineSearch(nxtEnergy); //always perform line search for gradient descent
std::cout<<"srOne::solve: gradient descent line search, iterations "<<lsCnt<<", took "<<myUtils::getTime() - debugTime<<" seconds."<<std::endl;
}
else {
debugTime = myUtils::getTime();
Eigen::VectorXd eigenGuess = Eigen::VectorXd::Zero(nDualVar_);
newtonStep_ = eigenGuess;
Eigen::MatrixXd hessian;
solveCG(nDualVar_, gradient_, hessian, newtonStep_, stepBackVec, cntIter);
eigenInter = getSROneHessVecProd(newtonStep_);
for (std::size_t iDualVar = 0; iDualVar != nDualVar_; ++iDualVar) {
eigenGuess[iDualVar] = 0; //eigenStep[i];
if (isnan(newtonStep_[iDualVar])) {
std::cout<<"CG output is NAN!"<<std::endl;
}
}
std::cout<<"solveQuasiNewton: CG took "<<myUtils::getTime() - debugTime<<" seconds."<<std::endl;
double interValOne = newtonStep_.dot(eigenInter);
interValOne *= 0.5;
double interValTwo = newtonStep_.dot(oriGrad);
double nxtApproxEnergyDiff = interValOne + interValTwo; //diff. wrt current energy
newDual = dualVar_ + newtonStep_;
nxtEnergy = myDual->computeEnergySP(newDual);
rho = (nxtEnergy - curSmoothDualEnergy_)/nxtApproxEnergyDiff;
std::cout<<"solveQuasiNewton: predicted energy difference "<<nxtApproxEnergyDiff<<" actual energy difference "<<(nxtEnergy - curSmoothDualEnergy_)<<std::endl;
if ((isnan(rho)) || (isinf(rho))) {
std::cout<<"rho debug: nxtApproxEnergyDiff "<<nxtApproxEnergyDiff<<" nxtEnergy "<<nxtEnergy<<" curSmoothDualEnergy_ "<<curSmoothDualEnergy_<<std::endl;
}
double eta_1 = 0.25, eta_2 = 0.5, eta_3 = 0.9, sigma_1 = 2, sigma_2 = 0.5, sigma_3 = 0.25, eta_0 = 0.0001;
//updating damping lambda inspired by "Newton's method for large-scale optimization" by Bouaricha et al
switch (qnTypeFlag_)
{
case 0:
if (rho <= eta_0) {
debugTime = myUtils::getTime(); //time to perform line search
lsCnt = performLineSearch(nxtEnergy); //perform line search only when rho <= eta_0
std::cout<<"solveQuasiNewton: line search, iterations "<<lsCnt<<", took "<<myUtils::getTime() - debugTime<<" seconds."<<std::endl;
stepNormNew = newtonStep_.norm();
if (stepNormOld/stepNormNew > 8) {
trustLambda_ *= pow(sigma_1,2);
}
else if (stepNormOld/stepNormNew > 4) {
trustLambda_ *= pow(sigma_1,2);
}
else {
trustLambda_ *= sigma_1;
}
}
else if (rho <= eta_1) {
trustLambda_ *= sigma_1;
}
else if ((rho > eta_1) && (rho <= eta_2)) {
trustLambda_ = trustLambda_;
}
else if ((rho > eta_2) && (rho <= eta_3)) {
trustLambda_ *= sigma_2;
}
else if (rho > eta_3) {
trustLambda_ *= sigma_3;
}
break;
case 1:
debugTime = myUtils::getTime(); //time to perform line search
lsCnt = performLineSearch(nxtEnergy); //perform line search always for inverse Hessian approximation
std::cout<<"solveQuasiNewton: line search, iterations "<<lsCnt<<", took "<<myUtils::getTime() - debugTime<<" seconds."<<std::endl;
stepNormNew = newtonStep_.norm();
if (nxtApproxEnergyDiff > 0) { //full step leads to function increase!
trustLambda_ /= sigma_1;
}
else if (rho <= eta_0) {
if (stepNormOld/stepNormNew > 8) {
trustLambda_ /= pow(sigma_1,2);
}
else if (stepNormOld/stepNormNew > 4) {
trustLambda_ /= pow(sigma_1,2);
}
else {
trustLambda_ /= sigma_1;
}
}
else if (rho <= eta_1) {
trustLambda_ /= sigma_1;
}
else if ((rho > eta_1) && (rho <= eta_2)) {
trustLambda_ = trustLambda_;
}
else if ((rho > eta_2) && (rho <= eta_3)) {
trustLambda_ /= sigma_2;
}
else if (rho > eta_3) {
trustLambda_ /= sigma_3;
}
}
// if (trustLambda_ < pow(10,-3)) {
// trustLambda_ = 0.1;
// }
} //if (!qnReadyFlag_)
stepNormOld = stepNormNew;
dualVar_ += newtonStep_;
//debugEigenVec(dualVar_);
myDual->distributeDualVars(dualVar_);
//******debug dump******
int checkIter = -1;
std::string opName;
if (cntIter == checkIter) {
opName = "gradient_" + std::to_string(checkIter) + ".txt";
std::ofstream opGrad(opName);
opGrad<<std::scientific;
opGrad<<std::setprecision(6);
opName = "dual_" + std::to_string(checkIter) + ".txt";
std::ofstream opDual(opName);
opDual<<std::scientific;
opDual<<std::setprecision(6);
opGrad<<gradient_(0);
opDual<<dualVar_(0);
for (std::size_t iterInd = 1; iterInd != nDualVar_; ++iterInd) {
opGrad<<" "<<gradient_(iterInd);
opDual<<" "<<dualVar_(iterInd);
}
opGrad.close();
opDual.close();
#if 0
std::ofstream hessFile;
opName = "hessian_" + std::to_string(checkIter) + ".txt";
hessFile.open(opName);
hessFile<<std::scientific;
hessFile<<std::setprecision(6);
for (int sJ = 0; sJ != nSubProb_; ++sJ) {
int sizSubOne = subProb_[sJ].getMemNode().size();
std::vector<int> nodeOffsetJ = subProb_[sJ].getNodeOffset();
std::vector<short> nLabelJ = subProb_[sJ].getNodeLabel();
std::set<int> subProbNeigh = subProb_[sJ].getNeigh();
for (int nJ = 0; nJ != sizSubOne; ++nJ) {
for (int lJ = 0; lJ != nLabelJ[nJ]; ++lJ) {
int curJ = nodeOffsetJ[nJ] + lJ;
for (std::set<int>::iterator sI = subProbNeigh.begin(); sI != subProbNeigh.end(); ++sI) {
int sizSubTwo = subProb_[*sI].getMemNode().size();
std::vector<int> nodeOffsetI = subProb_[*sI].getNodeOffset();
std::vector<short> nLabelI = subProb_[*sI].getNodeLabel();
for (int nI = 0; nI != sizSubTwo; ++nI) {
for (int lI = 0; lI != nLabelI[nI]; ++lI) {
int curI = nodeOffsetI[nI] + lI;
hessFile<<hessians_[sJ](curI,curJ)<<" ";
}
}
std::cout<<std::endl;
}
}
}
std::cout<<std::endl;
}
hessFile.close();
#endif
} //if cntIter
//******debug dump******
} //if (gradMax > gradTol_)
else if (annealIval_ == -1) { //no annealing
contIter = false;
gradNorm = myDual->getGradientNorm();
gradMax = myDual->getGradientMax();
}
else if (tau_ == tauMax_) { //terminate Newton iterations if least smooth level reached
contIter = false;
gradNorm = myDual->getGradientNorm();
gradMax = myDual->getGradientMax();
}
else { //otherwise, iterate till least smooth level is reached
dampThresh = 2*dampCriterion;
if (dampThresh < gradTol_) {
dampThresh = gradTol_;
}
}
#if 1
if (cntIter % 10000 == 0) {
double tEnergy = myUtils::getTime();
std::cout<<std::fixed;
std::cout<<std::setprecision(6);
std::cout<<"Smooth primal energy: "<<curSmoothPrimalEnergy<<" Smooth dual energy: "<<curSmoothDualEnergy_<<std::endl;
std::cout<<"Best non-smooth primal energy: "<<bestNonSmoothPrimalEnergy_<<" Non-smooth dual energy: "<<compNonSmoothEnergySP()<<std::endl;
std::cout<<" Best Integral primal energy: "<<bestIntPrimalEnergy_<<std::endl;
// std::cout<<"Computing energies took "<<myUtils::getTime() - tEnergy<<" seconds."<<std::endl;
std::cout<<"NOTE: ITERATION "<<cntIter<<" took "<<(tEnergy - tFull)<<" seconds. The following figure includes unnecessary energy computation."<<std::endl;
tCompEnergies += myUtils::getTime() - tEnergy;
}
#endif
std::cout<<"ITERATION "<<cntIter<<" iteration took "<<(myUtils::getTime() - tFull)<<" seconds."<<std::endl;
} //MAIN WHILE LOOP
recoverFeasPrimal();
//setFracAsFeas();
//recoverFeasPrimalWorks();
//recoverFracPrimal();
recoverMaxPrimal(primalFeas_);
#if 0
std::ofstream optimalDual("optimalDual.txt");
for (int i = 0; i != nDualVar_; ++i) {
optimalDual<<dualVar_(i)<<std::endl;
}
optimalDual.close();
#endif
std::cout<<std::fixed;
std::cout<<std::setprecision(6);
std::cout<<"solveQuasiNewton: Curvature condition problem count "<<qnProblemCnt<<std::endl;
std::cout<<"solveQuasiNewton: Final fractional primal energy: "<<compSmoothPrimalEnergy()<<std::endl;
std::cout<<"solveQuasiNewton: Final smooth dual energy: "<<computeEnergySP(dualVar_)<<std::endl;
std::cout<<"solveQuasiNewton: Best integral primal energy (feasible primal): "<<bestIntPrimalEnergy_<<std::endl;
//recoverMaxPrimal(primalFrac_);
//std::cout<<"solveNewton: Integral primal energy (directly from dual): "<<compIntPrimalEnergy()<<std::endl;
//std::cout<<"solveNewton: Non-smooth dual energy: "<<compNonSmoothEnergySP()<<std::endl;
//std::cout<<"Total time spent on computing energies in each iteration: "<<tCompEnergies<<std::endl;
return 0;
}
Eigen::VectorXd srOne::getSROneHessVecProd(const Eigen::VectorXd &ipVector)
{
Eigen::VectorXd opVector;
//trustLambda_ = 0; //#### TRYING PURELY LINE SEARCH BASED APPROACH
//double stepTime = myUtils::getTime();
Eigen::VectorXd vectorOne = Nmat_.transpose()*ipVector;
//std::cout<<"N^T*ipVector takes "<<myUtils::getTime() - stepTime<<" second. ";
//stepTime = myUtils::getTime();
Eigen::VectorXd vectorTwo = Mmat_.inverse()*vectorOne;
//std::cout<<" M^-1*vectorOne takes "<<myUtils::getTime() - stepTime<<" seconds. ";
//stepTime = myUtils::getTime();
Eigen::VectorXd vectorThree = Nmat_*vectorTwo;
//std::cout<<" N*vectorTwo takes "<<myUtils::getTime() - stepTime<<" seconds. ";
//stepTime = myUtils::getTime();
//opVector = (b0Scale_+ trustLambda_)*Eigen::MatrixXd::Identity(nDualVar_,nDualVar_)*ipVector - vectorThree;
opVector = (b0Scale_+ trustLambda_)*ipVector + vectorThree;
//std::cout<<" Last operation takes "<<myUtils::getTime() - stepTime<<" seconds. "<<std::endl;
return opVector;
}