-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathsphere-hacked.js
608 lines (488 loc) · 18.4 KB
/
sphere-hacked.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
// **Sphere** renders a mathematically perfect textured sphere.
// It calculates the surface of the sphere instead of approximating it with triangles.
// Shamefully hacked by Sébastien Drouyer
/*jshint laxcomma: true, laxbreak: true, browser: true */
(function() {
"use strict";
var opts = { tilt: 40
, turn: 20
};
// Tiling informations
var tiling = {
horizontal: 1,
vertical: 1
};
// frame count, current angle of rotation. inc/dec to turn.
var gCtx;
var gImage, gCtxImg;
//Variable to hold the size of the canvas
var size;
var canvasImageData, textureImageData;
// Constants for indexing dimentions
var X=0, Y=1, Z=2;
var textureWidth, textureHeight;
var hs=30; // Horizontal scale of viewing area
var vs=30; // Vertical scale of viewing area
// NB The viewing area is an abstract rectangle in the 3d world and is not
// the same as the canvas used to display the image.
var F = [0,0,0]; // Focal point of viewer
var S = [0,30,0]; // Centre of sphere/planet
var r=12; // Radius of sphere/planet
// Distance of the viewing area from the focal point. This seems
// to give strange results if it is not equal to S[Y]. It should
// theoreticaly be changable but hs & vs can still be used along
// with r to change how large the sphere apears on the canvas.
// HOWEVER, the values of hs, vs, S[Y], f & r MUST NOT BE TOO BIG
// as this will result in overflow errors which are not traped
// and do not stop the script but will result in incorrect
// displaying of the texture upon the sphere.
var f = 30;
// There may be a solution to the above problem by finding L in
// a slightly different way.
// Since the problem is equivelent to finding the intersection
// in 2D space of a line and a circle then each view area pixel
// and associated vector can be used define a 2D plane in the 3D
// space that 'contains' the vector S-F which is the focal point
// to centre of the sphere.
//
// This is essentialy the same problem but I belive/hope it will
// not result in the same exact solution. I have hunch that the
// math will not result in such big numbers. Since this abstract
// plane will be spinning, it may be posilbe to use the symetry
// of the arangement to reuse 1/4 of the calculations.
// Variables to hold rotations about the 3 axis
var RX = 0,RY,RZ;
// Temp variables to hold them whilst rendering so they won't get updated.
var rx,ry,rz;
var a;
var b;
var b2; // b squared
var bx=F[X]-S[X]; // = 0 for current values of F and S
var by=F[Y]-S[Y];
var bz=F[Z]-S[Z]; // = 0 for current values of F and S
// c = Fx^2 + Sx^2 -2FxSx + Fy^2 + Sy^2 -2FySy + Fz^2 + Sz^2 -2FzSz - r^2
// for current F and S this means c = Sy^2 - r^2
var c = F[X]*F[X] + S[X]*S[X]
+ F[Y]*F[Y] + S[Y]*S[Y]
+ F[Z]*F[Z] + S[Z]*S[Z]
- 2*(F[X]*S[X] + F[Y]*S[Y] + F[Z]*S[Z])
- r*r
;
var c4 = c*4; // save a bit of time maybe during rendering
var s;
var m1 = 0;
//double m2 = 0;
// The following are use to calculate the vector of the current pixel to be
// drawn from the focus position F
var hs_ch; // horizontal scale divided by canvas width
var vs_cv; // vertical scale divided by canvas height
var hhs = 0.5*hs; // half horizontal scale
var hvs = 0.5*vs; // half vertical scale
var V = new Array(3); // vector for storing direction of each pixel from F
var L = new Array(3); // Location vector from S that pixel 'hits' sphere
var VY2=f*f; // V[Y] ^2 NB May change if F changes
var rotCache = {};
var calculateVector = function(h,v) {
// Calculate vector from focus point (Origin, so can ignor) to pixel
V[X]=(hs_ch*h)-hhs;
// V[Y] always the same as view frame doesn't mov
V[Z]=(vs_cv*v)-hvs;
// Vector (L) from S where m*V (m is an unknown scalar) intersects
// surface of sphere is as follows
//
// <pre>
// L = F + mV - S
//
// ,-------.
// / \ -----m------
// | S<-L->| <-V->F
// \ /
// `-------'
//
// L and m are unknown so find magnitude of vectors as the magnitude
// of L is the radius of the sphere
//
// |L| = |F + mV - S| = r
//
// Can be rearranged to form a quadratic
//
// 0 = am² +bm + c
//
// and solved to find m, using the following formula
//
// <pre>
// ___________
// m = ( -b ± \/(b²) - 4ac ) /2a
// </pre>
//
// r = |F + mV - S|
// __________________________________________________
// r = v(Fx + mVx -Sx)² + (Fy + mVy -Sy)² + (Fz + mVz -Sz)²
//
// r² = (Fx + mVx -Sx)² + (Fy + mVy -Sy)² + (Fz + mVz -Sz)²
//
// r² = (Fx + mVx -Sx)² + (Fy + mVy -Sy)² + (Fz + mVz -Sz)²
//
// 0 = Fx² + FxVxm -FxSx + FxVxm + Vx²m² -SxVxm -SxFx -SxVxm + Sx²
// +Fy² + FyVym -FySy + FyVym + Vy²m² -SyVym -SyFy -SyVym + Sy²
// +Fz² + FzVzm -FzSz + FzVzm + Vz²m² -SzVzm -SzFz -SzVzm + Sz² - r²
//
// 0 = Vx²m² + FxVxm + FxVxm -2SxVxm + Fx² -FxSx -SxFx + Sx²
// +Vy²m² + FyVym + FyVym -2SyVym + Fy² -FySy -SyFy + Sy²
// +Vz²m² + FzVzm + FzVzm -2SzVzm + Fz² -FzSz -SzFz + Sz² - r²
//
// 0 = (Vx² + Vy² + Vz²)m² + (FxVx + FxVx -2SxVx)m + Fx² - 2FxSx + Sx²
// + (FyVy + FyVy -2SyVy)m + Fy² - 2FySy + Sy²
// + (FzVz + FzVz -2SzVz)m + Fz² - 2FzSz + Sz² - r²
//
// 0 = |Vz|m² + (FxVx + FxVx -2SxVx)m + |F| - 2FxSx + |S|
// + (FyVy + FyVy -2SyVy)m - 2FySy
// + (FyVy + FyVy -2SyVy)m - 2FySy - r²
//
// a = |Vz|
// b =
// c = Fx² + Sx² -2FxSx + Fy² + Sy² -2FySy + Fz² + Sz² -2FzSz - r²
// for current F and S this means c = Sy² - r²
// </pre>
// Where a, b and c are as in the code.
// Only the solution for the negative square root term is needed as the
// closest intersection is wanted. The other solution to m would give
// the intersection of the 'back' of the sphere.
a=V[X]*V[X]+VY2+V[Z]*V[Z];
s=(b2-a*c4); // the square root term
// if s is negative then there are no solutions to m and the
// sphere is not visible on the current pixel on the canvas
// so only draw a pixel if the sphere is visable
// 0 is a special case as it is the 'edge' of the sphere as there
// is only one solution. (I have never seen it happen though)
// of the two solutions m1 & m2 the nearest is m1, m2 being the
// far side of the sphere.
if (s > 0) {
m1 = ((-b)-(Math.sqrt(s)))/(2*a);
L[X]=m1*V[X]; // bx+m1*V[X];
L[Y]=by+(m1*V[Y]);
L[Z]=m1*V[Z]; // bz+m1*V[Z];
// Do a couple of rotations on L
var lx=L[X];
var srz = Math.sin(rz);
var crz = Math.cos(rz);
L[X]=lx*crz-L[Y]*srz;
L[Y]=lx*srz+L[Y]*crz;
var lz;
lz=L[Z];
var sry = Math.sin(ry);
var cry = Math.cos(ry);
L[Z]=lz*cry-L[Y]*sry;
L[Y]=lz*sry+L[Y]*cry;
// Calculate the position that this location on the sphere
// coresponds to on the texture
var lh = textureWidth + textureWidth * ( Math.atan2(L[Y],L[X]) + Math.PI ) / (2*Math.PI);
// %textureHeight at end to get rid of south pole bug. probaly means that one
// pixel may be a color from the opposite pole but as long as the
// poles are the same color this won't be noticed.
var lv = textureWidth * Math.floor(textureHeight-1-(textureHeight*(Math.acos(L[Z]/r)/Math.PI)%textureHeight));
return {lv:lv,lh:lh};
}
return null;
};
/**
* Create the sphere function opject
*/
var sphere = function(){
var textureData = textureImageData.data;
var canvasData = canvasImageData.data;
var copyFnc;
if (canvasData.splice){
//2012-04-19 splice on canvas data not supported in any current browser
copyFnc = function(idxC, idxT){
canvasData.splice(idxC, 4 , textureData[idxT + 0]
, textureData[idxT + 1]
, textureData[idxT + 2]
, 255);
};
} else {
copyFnc = function(idxC, idxT){
canvasData[idxC + 0] = textureData[idxT + 0];
canvasData[idxC + 1] = textureData[idxT + 1];
canvasData[idxC + 2] = textureData[idxT + 2];
canvasData[idxC + 3] = 255;
};
}
var getVector = (function(){
var cache = new Array(size*size);
return function(pixel){
if (cache[pixel] === undefined){
var v = Math.floor(pixel / size);
var h = pixel - v * size;
cache[pixel] = calculateVector(h,v);
}
return cache[pixel];
};
})();
var posDelta = textureWidth*0.2/(20*1000);
//var firstFramePos = (new Date()) * posDelta;
var stats = {fastCount: 0, fastSumMs: 0};
return {
posDelta: posDelta,
firstFramePos: (new Date()) * posDelta,
positionsCache: [],
minX: null,
minY: null,
maxX: null,
maxY: null,
init: function(options) {
this.changeRotation(options);
hs=30; // Horizontal scale of viewing area
vs=30; // Vertical scale of viewing area
F = [0,0,0]; // Focal point of viewer
S = [0,30,0]; // Centre of sphere/planet
r=options.r; // Radius of sphere/planet
f = 30;
bx=F[X]-S[X]; // = 0 for current values of F and S
by=F[Y]-S[Y];
bz=F[Z]-S[Z]; // = 0 for current values of F and S
c = F[X]*F[X] + S[X]*S[X]
+ F[Y]*F[Y] + S[Y]*S[Y]
+ F[Z]*F[Z] + S[Z]*S[Z]
- 2*(F[X]*S[X] + F[Y]*S[Y] + F[Z]*S[Z])
- r*r
;
c4 = c*4; // save a bit of time maybe during rendering
m1 = 0;
hhs = 0.5*hs; // half horizontal scale
hvs = 0.5*vs; // half vertical scale
/*V = new Array(3);*/ // vector for storing direction of each pixel from F
L = new Array(3); // Location vector from S that pixel 'hits' sphere
VY2=f*f; // V[Y] ^2 NB May change if F changes
rotCache = {};
if (canvasData.splice){
//2012-04-19 splice on canvas data not supported in any current browser
copyFnc = function(idxC, idxT){
canvasData.splice(idxC, 4 , textureData[idxT + 0]
, textureData[idxT + 1]
, textureData[idxT + 2]
, 255);
};
} else {
copyFnc = function(idxC, idxT){
canvasData[idxC + 0] = textureData[idxT + 0];
canvasData[idxC + 1] = textureData[idxT + 1];
canvasData[idxC + 2] = textureData[idxT + 2];
canvasData[idxC + 3] = 255;
};
}
posDelta = textureWidth*0.2/(20*1000);
//var firstFramePos = (new Date()) * posDelta;
stats = {fastCount: 0, fastSumMs: 0};
getVector = (function(){
var cache = new Array(size*size);
return function(pixel){
if (cache[pixel] === undefined){
var v = Math.floor(pixel / size);
var h = pixel - v * size;
cache[pixel] = calculateVector(h,v);
}
return cache[pixel];
};
})();
},
renderFrame: function(time){
this.RF(time);
return;
stats.firstMs = new Date() - time;
this.renderFrame = this.sumRF;
console.log(rotCache);
for (var key in rotCache){
if (rotCache[key] > 1){
console.log(rotCache[key]);
}
}
},
sumRF: function(time){
this.RF(time);
stats.fastSumMs += new Date() - time;
stats.fastCount++;
if (stats.fastSumMs > stats.firstMs) {
// alert("calc:precompute ratio = 1:"+ stats.fastCount +" "+ stats.fastSumMs +" "+ stats.firstMs);
this.renderFrame = this.RF;
}
},
turnBy: function(time){
return 24*60*60 + this.firstFramePos - time * this.posDelta
},
changeRotation: function(opts) {
ry=90+opts.tilt;
rz=180+opts.turn;
RY = (90-ry);
RZ = (180-rz);
RX = 0,RY,RZ;
},
getRadius: function() {
if (this.minX === null) {
return null;
} else {
return ((this.maxX - this.minX) + (this.maxY - this.minY)) / 2;
}
},
getTexturePointPosition: function(x, y) {
var maxDistance = 30;
for (var i = 0; i < maxDistance; i++) {
var xx
var yy;
var pos;
for (xx = x - i; xx < x + i + 1; xx++) {
yy = y - i;
pos = this.getTexturePointPositionExact(xx, yy);
if (typeof pos !== 'undefined') {
return pos;
}
yy = y + i;
pos = this.getTexturePointPositionExact(xx, yy);
if (typeof pos !== 'undefined') {
return pos;
}
}
for (yy = y - i + 1; yy < y + i; yy++) {
xx = x - i;
pos = this.getTexturePointPositionExact(xx, yy);
if (typeof pos !== 'undefined') {
return pos;
}
xx = x + i;
pos = this.getTexturePointPositionExact(xx, yy);
if (typeof pos !== 'undefined') {
return pos;
}
}
}
},
getTexturePointPositionExact: function(x, y) {
var pixel = this.positionsCache[x + y * textureWidth];
if (typeof pixel === 'undefined') {
return pixel;
} else {
return {x: pixel % size, y: Math.floor(pixel / size), pixel: pixel, originalX: x, originalY: y};
}
},
RF: function(time){
// RX, RY & RZ may change part way through if the newR? (change tilt/turn) meathods are called while
// this meathod is running so put them in temp vars at render start.
// They also need converting from degrees to radians
rx=RX*Math.PI/180;
ry=RY*Math.PI/180;
rz=RZ*Math.PI/180;
// add to 24*60*60 so it will be a day before turnBy is negative and it hits the slow negative modulo bug
var turnBy = this.turnBy(time);
var pixel = size*size;
var h2 = (textureHeight * textureHeight);
this.positionsCache = new Array(h2);
this.minX = null;
this.minY = null;
this.maxX = null;
this.maxY = null;
while(pixel--){
var vector = getVector(pixel);
if (vector !== null){
var x = pixel % size;
var y = Math.floor(pixel / size);
if (this.minX == null) {
this.minX = x;
this.maxX = x;
this.minY = y;
this.maxY = y;
} else {
if (this.minX > x) {
this.minX = x;
}
if (this.maxX < x) {
this.maxX = x;
}
if (this.minY > y) {
this.minY = y;
}
if (this.maxY < y) {
this.maxY = y;
}
}
//rotate texture on sphere
var lh = Math.floor(vector.lh * tiling.horizontal + turnBy * tiling.horizontal) % textureWidth;
/* lh = (lh < 0)
? ((textureWidth-1) - ((lh-1)%textureWidth))
: (lh % textureWidth) ;
*/
var idxC = pixel * 4;
var idxT = ((lh + (vector.lv * tiling.vertical) % h2) * 4);
this.positionsCache[Math.floor(idxT / 4)] = Math.floor(idxC / 4);
/* TODO light for alpha channel or alter s or l in hsl color value?
- fn to calc distance between two points on sphere?
- attenuate light by distance from point and rotate point separate from texture rotation
*/
// Update the values of the pixel;
canvasData[idxC + 0] = textureData[idxT + 0];
canvasData[idxC + 1] = textureData[idxT + 1];
canvasData[idxC + 2] = textureData[idxT + 2];
canvasData[idxC + 3] = 255;
// Slower?
/*
canvasImageData.data[idxC + 0] = textureImageData.data[idxT + 0];
canvasImageData.data[idxC + 1] = textureImageData.data[idxT + 1];
canvasImageData.data[idxC + 2] = textureImageData.data[idxT + 2];
canvasImageData.data[idxC + 3] = 255;
*/
// Faster?
/* copyFnc(idxC,idxT); */
}
}
gCtx.putImageData(canvasImageData, 0, 0);
}};
};
function copyImageToBuffer(aImg)
{
gImage = document.createElement('canvas');
textureWidth = aImg.naturalWidth;
textureHeight = aImg.naturalHeight;
gImage.width = textureWidth;
gImage.height = textureHeight;
gCtxImg = gImage.getContext("2d");
gCtxImg.clearRect(0, 0, textureHeight, textureWidth);
gCtxImg.drawImage(aImg, 0, 0);
textureImageData = gCtxImg.getImageData(0, 0, textureHeight, textureWidth);
hs_ch = (hs / size);
vs_cv = (vs / size);
}
this.createSphere = function (gCanvas, textureUrl, callback, tilingInfos) {
size = Math.min(gCanvas.width, gCanvas.height);
gCtx = gCanvas.getContext("2d");
canvasImageData = gCtx.createImageData(size, size);
tiling = tilingInfos;
hs_ch = (hs / size);
vs_cv = (vs / size);
V[Y]=f;
b=(2*(-f*V[Y]));
b2=Math.pow(b,2);
var img = new Image();
img.onload = function() {
copyImageToBuffer(img);
var earth = sphere();
callback(earth, textureWidth, textureHeight);
// BAD! uses 100% CPU, stats.js runs at 38FPS
/*
function renderFrame(){
earth.renderFrame(new Date);
}
setInterval(renderFrame, 0);
*/
// Better - runs at steady state
/*
(function loop(){
setTimeout(function(){
earth.renderFrame(new Date);
loop();
}, 0);
})();
*/
// Best! only renders frames that will be seen. stats.js runs at 60FPS on my desktop
};
img.setAttribute("src", textureUrl);
};
}).call(this);