forked from ananyahjha93/cycle-consistent-vae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
256 lines (195 loc) · 10.9 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import numpy as np
from itertools import cycle
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from tensorboardX import SummaryWriter
from utils import weights_init
from utils import transform_config
from data_loader import MNIST_Paired
from networks import Encoder, Decoder
from torch.utils.data import DataLoader
from utils import imshow_grid, mse_loss, reparameterize, l1_loss
def training_procedure(FLAGS):
"""
model definition
"""
encoder = Encoder(style_dim=FLAGS.style_dim, class_dim=FLAGS.class_dim)
encoder.apply(weights_init)
decoder = Decoder(style_dim=FLAGS.style_dim, class_dim=FLAGS.class_dim)
decoder.apply(weights_init)
# load saved models if load_saved flag is true
if FLAGS.load_saved:
encoder.load_state_dict(torch.load(os.path.join('checkpoints', FLAGS.encoder_save)))
decoder.load_state_dict(torch.load(os.path.join('checkpoints', FLAGS.decoder_save)))
"""
variable definition
"""
X_1 = torch.FloatTensor(FLAGS.batch_size, FLAGS.num_channels, FLAGS.image_size, FLAGS.image_size)
X_2 = torch.FloatTensor(FLAGS.batch_size, FLAGS.num_channels, FLAGS.image_size, FLAGS.image_size)
X_3 = torch.FloatTensor(FLAGS.batch_size, FLAGS.num_channels, FLAGS.image_size, FLAGS.image_size)
style_latent_space = torch.FloatTensor(FLAGS.batch_size, FLAGS.style_dim)
"""
loss definitions
"""
cross_entropy_loss = nn.CrossEntropyLoss()
'''
add option to run on GPU
'''
if FLAGS.cuda:
encoder.cuda()
decoder.cuda()
cross_entropy_loss.cuda()
X_1 = X_1.cuda()
X_2 = X_2.cuda()
X_3 = X_3.cuda()
style_latent_space = style_latent_space.cuda()
"""
optimizer and scheduler definition
"""
auto_encoder_optimizer = optim.Adam(
list(encoder.parameters()) + list(decoder.parameters()),
lr=FLAGS.initial_learning_rate,
betas=(FLAGS.beta_1, FLAGS.beta_2)
)
reverse_cycle_optimizer = optim.Adam(
list(encoder.parameters()),
lr=FLAGS.initial_learning_rate,
betas=(FLAGS.beta_1, FLAGS.beta_2)
)
# divide the learning rate by a factor of 10 after 80 epochs
auto_encoder_scheduler = optim.lr_scheduler.StepLR(auto_encoder_optimizer, step_size=80, gamma=0.1)
reverse_cycle_scheduler = optim.lr_scheduler.StepLR(reverse_cycle_optimizer, step_size=80, gamma=0.1)
"""
training
"""
if torch.cuda.is_available() and not FLAGS.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('reconstructed_images'):
os.makedirs('reconstructed_images')
# load_saved is false when training is started from 0th iteration
if not FLAGS.load_saved:
with open(FLAGS.log_file, 'w') as log:
log.write('Epoch\tIteration\tReconstruction_loss\tKL_divergence_loss\tReverse_cycle_loss\n')
# load data set and create data loader instance
print('Loading MNIST paired dataset...')
paired_mnist = MNIST_Paired(root='mnist', download=True, train=True, transform=transform_config)
loader = cycle(DataLoader(paired_mnist, batch_size=FLAGS.batch_size, shuffle=True, num_workers=0, drop_last=True))
# initialize summary writer
writer = SummaryWriter()
for epoch in range(FLAGS.start_epoch, FLAGS.end_epoch):
print('')
print('Epoch #' + str(epoch) + '..........................................................................')
# update the learning rate scheduler
auto_encoder_scheduler.step()
reverse_cycle_scheduler.step()
for iteration in range(int(len(paired_mnist) / FLAGS.batch_size)):
# A. run the auto-encoder reconstruction
image_batch_1, image_batch_2, _ = next(loader)
auto_encoder_optimizer.zero_grad()
X_1.copy_(image_batch_1)
X_2.copy_(image_batch_2)
style_mu_1, style_logvar_1, class_latent_space_1 = encoder(Variable(X_1))
style_latent_space_1 = reparameterize(training=True, mu=style_mu_1, logvar=style_logvar_1)
kl_divergence_loss_1 = FLAGS.kl_divergence_coef * (
- 0.5 * torch.sum(1 + style_logvar_1 - style_mu_1.pow(2) - style_logvar_1.exp())
)
kl_divergence_loss_1 /= (FLAGS.batch_size * FLAGS.num_channels * FLAGS.image_size * FLAGS.image_size)
kl_divergence_loss_1.backward(retain_graph=True)
style_mu_2, style_logvar_2, class_latent_space_2 = encoder(Variable(X_2))
style_latent_space_2 = reparameterize(training=True, mu=style_mu_2, logvar=style_logvar_2)
kl_divergence_loss_2 = FLAGS.kl_divergence_coef * (
- 0.5 * torch.sum(1 + style_logvar_2 - style_mu_2.pow(2) - style_logvar_2.exp())
)
kl_divergence_loss_2 /= (FLAGS.batch_size * FLAGS.num_channels * FLAGS.image_size * FLAGS.image_size)
kl_divergence_loss_2.backward(retain_graph=True)
reconstructed_X_1 = decoder(style_latent_space_1, class_latent_space_2)
reconstructed_X_2 = decoder(style_latent_space_2, class_latent_space_1)
reconstruction_error_1 = FLAGS.reconstruction_coef * mse_loss(reconstructed_X_1, Variable(X_1))
reconstruction_error_1.backward(retain_graph=True)
reconstruction_error_2 = FLAGS.reconstruction_coef * mse_loss(reconstructed_X_2, Variable(X_2))
reconstruction_error_2.backward()
reconstruction_error = (reconstruction_error_1 + reconstruction_error_2) / FLAGS.reconstruction_coef
kl_divergence_error = (kl_divergence_loss_1 + kl_divergence_loss_2) / FLAGS.kl_divergence_coef
auto_encoder_optimizer.step()
# B. reverse cycle
image_batch_1, _, __ = next(loader)
image_batch_2, _, __ = next(loader)
reverse_cycle_optimizer.zero_grad()
X_1.copy_(image_batch_1)
X_2.copy_(image_batch_2)
style_latent_space.normal_(0., 1.)
_, __, class_latent_space_1 = encoder(Variable(X_1))
_, __, class_latent_space_2 = encoder(Variable(X_2))
reconstructed_X_1 = decoder(Variable(style_latent_space), class_latent_space_1.detach())
reconstructed_X_2 = decoder(Variable(style_latent_space), class_latent_space_2.detach())
style_mu_1, style_logvar_1, _ = encoder(reconstructed_X_1)
style_latent_space_1 = reparameterize(training=False, mu=style_mu_1, logvar=style_logvar_1)
style_mu_2, style_logvar_2, _ = encoder(reconstructed_X_2)
style_latent_space_2 = reparameterize(training=False, mu=style_mu_2, logvar=style_logvar_2)
reverse_cycle_loss = FLAGS.reverse_cycle_coef * l1_loss(style_latent_space_1, style_latent_space_2)
reverse_cycle_loss.backward()
reverse_cycle_loss /= FLAGS.reverse_cycle_coef
reverse_cycle_optimizer.step()
if (iteration + 1) % 10 == 0:
print('')
print('Epoch #' + str(epoch))
print('Iteration #' + str(iteration))
print('')
print('Reconstruction loss: ' + str(reconstruction_error.data.storage().tolist()[0]))
print('KL-Divergence loss: ' + str(kl_divergence_error.data.storage().tolist()[0]))
print('Reverse cycle loss: ' + str(reverse_cycle_loss.data.storage().tolist()[0]))
# write to log
with open(FLAGS.log_file, 'a') as log:
log.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format(
epoch,
iteration,
reconstruction_error.data.storage().tolist()[0],
kl_divergence_error.data.storage().tolist()[0],
reverse_cycle_loss.data.storage().tolist()[0]
))
# write to tensorboard
writer.add_scalar('Reconstruction loss', reconstruction_error.data.storage().tolist()[0],
epoch * (int(len(paired_mnist) / FLAGS.batch_size) + 1) + iteration)
writer.add_scalar('KL-Divergence loss', kl_divergence_error.data.storage().tolist()[0],
epoch * (int(len(paired_mnist) / FLAGS.batch_size) + 1) + iteration)
writer.add_scalar('Reverse cycle loss', reverse_cycle_loss.data.storage().tolist()[0],
epoch * (int(len(paired_mnist) / FLAGS.batch_size) + 1) + iteration)
# save model after every 5 epochs
if (epoch + 1) % 5 == 0 or (epoch + 1) == FLAGS.end_epoch:
torch.save(encoder.state_dict(), os.path.join('checkpoints', FLAGS.encoder_save))
torch.save(decoder.state_dict(), os.path.join('checkpoints', FLAGS.decoder_save))
"""
save reconstructed images and style swapped image generations to check progress
"""
image_batch_1, image_batch_2, _ = next(loader)
image_batch_3, _, __ = next(loader)
X_1.copy_(image_batch_1)
X_2.copy_(image_batch_2)
X_3.copy_(image_batch_3)
style_mu_1, style_logvar_1, _ = encoder(Variable(X_1))
_, __, class_latent_space_2 = encoder(Variable(X_2))
style_mu_3, style_logvar_3, _ = encoder(Variable(X_3))
style_latent_space_1 = reparameterize(training=False, mu=style_mu_1, logvar=style_logvar_1)
style_latent_space_3 = reparameterize(training=False, mu=style_mu_3, logvar=style_logvar_3)
reconstructed_X_1_2 = decoder(style_latent_space_1, class_latent_space_2)
reconstructed_X_3_2 = decoder(style_latent_space_3, class_latent_space_2)
# save input image batch
image_batch = np.transpose(X_1.cpu().numpy(), (0, 2, 3, 1))
image_batch = np.concatenate((image_batch, image_batch, image_batch), axis=3)
imshow_grid(image_batch, name=str(epoch) + '_original', save=True)
# save reconstructed batch
reconstructed_x = np.transpose(reconstructed_X_1_2.cpu().data.numpy(), (0, 2, 3, 1))
reconstructed_x = np.concatenate((reconstructed_x, reconstructed_x, reconstructed_x), axis=3)
imshow_grid(reconstructed_x, name=str(epoch) + '_target', save=True)
style_batch = np.transpose(X_3.cpu().numpy(), (0, 2, 3, 1))
style_batch = np.concatenate((style_batch, style_batch, style_batch), axis=3)
imshow_grid(style_batch, name=str(epoch) + '_style', save=True)
# save style swapped reconstructed batch
reconstructed_style = np.transpose(reconstructed_X_3_2.cpu().data.numpy(), (0, 2, 3, 1))
reconstructed_style = np.concatenate((reconstructed_style, reconstructed_style, reconstructed_style), axis=3)
imshow_grid(reconstructed_style, name=str(epoch) + '_style_target', save=True)