-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
222 lines (174 loc) · 7.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from __future__ import print_function
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torchvision.datasets as dset
import torchvision.transforms as T
import torchvision.utils as vutils
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from models import (
MNISTGenerator, MNISTDiscriminator,
ChairsGenerator, ChairsDiscriminator,
MNISTShareGenerator, ChairsShareGenerator
)
import re
import pdb
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', choices=['mnist', 'chairs'], help='which data to use')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=1)
parser.add_argument('--batch_size', type=int, default=100, help='input batch size')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
# parser.add_argument('--netG', default='', help="path to netG (to continue training)")
# parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--load_from', default='', help='pth file name of netG and netD (to continue training)')
parser.add_argument('--n_div', type=int, default=4, help='division on number of generator parameters')
parser.add_argument('--share', action='store_true', help='whether to share initial layer')
parser.add_argument('--dis_step', type=int, default=5, help='number of dis step per one gen step')
parser.add_argument('--lambda', dest='lambda_q', type=float, default=1.,
help='coefficient for variational mutual information')
parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--log_every', type=int, default=10, help='image save interval')
parser.add_argument('--save_every', type=int, default=50, help='model save interval')
args = parser.parse_args()
print(args)
from datetime import datetime
timestamp = datetime.now().strftime('%b%d_%H-%M-%S')
start_epoch = 0
if args.load_from != '':
netG_fname = 'netG_' + args.load_from + '.pth'
netD_fname = 'netD_' + args.load_from + '.pth'
netG_path = os.path.join(args.outf, args.dataset, 'models', netG_fname)
netD_path = os.path.join(args.outf, args.dataset, 'models', netD_fname)
m = re.match('(.*\d{2}_\d{2}-\d{2}-\d{2})_epoch_(\d+)', args.load_from)
timestamp = m.group(1)
start_epoch = int(m.group(2))
dirname = (f"{timestamp}_{args.dataset}_batch_size={args.batch_size}_"
f"lambda={args.lambda_q}_n_div={args.n_div}_dis_step={args.dis_step}_last_three_noshare")
os.makedirs(os.path.join(args.outf, args.dataset, dirname), exist_ok=True)
os.makedirs(os.path.join(args.outf, args.dataset, 'models'), exist_ok=True)
# pdb.set_trace()
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
print("Random Seed: ", args.manualSeed)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
device = torch.device("cuda:0" if args.cuda else "cpu")
if args.dataset == 'mnist':
dataset = dset.MNIST(
root='datasets/mnist', download=True,
transform=T.Compose([
T.ToTensor(),
T.Normalize((0.5,), (0.5,)),
])
)
nz = 8
n_gen = 10
n_epoch = 25 * args.dis_step
if args.share:
netG = MNISTShareGenerator(nz, n_gen, args.n_div).to(device)
else:
netG = MNISTGenerator(nz, n_gen, args.n_div).to(device)
netD = MNISTDiscriminator(n_gen).to(device)
elif args.dataset == 'chairs':
container = np.load('/home/sjjung/data/chairs/chairs_half_64.npz')
img_data = container['img']
label_data = container['label']
transform = T.Compose([
T.ToTensor(),
T.Normalize((0.5,), (0.5,)),
])
img_tensor = torch.stack([transform(i) for i in img_data])
label_tensor = torch.Tensor(label_data)
dataset = torch.utils.data.TensorDataset(img_tensor, label_tensor)
nz = 10
n_gen = 20
n_epoch = 1000 * args.dis_step
if args.share:
netG = ChairsShareGenerator(nz, n_gen, args.n_div).to(device)
else:
netG = ChairsGenerator(nz, n_gen, args.n_div).to(device)
netD = ChairsDiscriminator(n_gen).to(device)
else:
raise NotImplementedError
if args.load_from != '':
netG.load_state_dict(torch.load(netG_path))
netD.load_state_dict(torch.load(netD_path))
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
shuffle=True, num_workers=int(args.workers), pin_memory=args.cuda)
data_per_gen = args.batch_size // n_gen
fixed_noise = torch.randn(data_per_gen, nz, device=device).repeat(n_gen, 1).view(-1, nz)
fixed_gidx = torch.arange(n_gen).view(-1, 1).repeat(1, data_per_gen).view(-1)
log_dir = os.path.join(
'runs', dirname
)
writer = SummaryWriter(log_dir)
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=args.lr, betas=(args.beta1, 0.999))
optimizerG = optim.Adam([
{'params': netG.parameters()},
{'params': netD.latent.parameters()},
{'params': netD.posterior.parameters()},
], lr=args.lr, betas=(args.beta1, 0.999))
i_step = 0
for i_epoch in range(start_epoch+1, n_epoch+1):
for i, (real, _) in enumerate(dataloader, 0):
############################
# (1) Update D network: maximize E_{x ~ p_x} [D(x)] - E_{z ~ p_z} [D(G(z))]
###########################
batch_size = real.size(0)
noise = torch.randn(batch_size, nz, device=device)
g_idx = torch.multinomial(torch.ones(n_gen), batch_size, replacement=True)
fake = netG(noise, g_idx)
# train with real
netD.zero_grad()
real = real.to(device)
output, _ = netD(real)
real_score = output.mean()
# train with fake
output, _ = netD(fake.detach())
fake_score = output.mean()
errD = - real_score + fake_score
errD.backward()
optimizerD.step()
############################
# (2) Update G network: maximize E_{z ~ p_z} [D(G(z))]
###########################
if i_step % args.dis_step == 0:
optimizerG.zero_grad()
output, posterior = netD(fake)
fake_score = output.mean()
errQ = F.cross_entropy(posterior, g_idx.to(device))
errG = - fake_score + args.lambda_q * errQ
errG.backward()
optimizerG.step()
writer.add_scalar('dis_loss', errD, i_step)
writer.add_scalar('Q loss', errQ, i_step)
i_step += 1
if i_epoch % args.log_every == 0:
vutils.save_image(real,
f'{args.outf}/{args.dataset}/{dirname}/real_samples.png', nrow=n_gen,
normalize=True)
with torch.no_grad():
netG.eval()
fake = netG(fixed_noise, fixed_gidx)
netG.train()
vutils.save_image(fake.detach(),
f'{args.outf}/{args.dataset}/{dirname}/fake_samples_epoch_{i_epoch}.png', nrow=data_per_gen,
normalize=True)
if i_epoch % args.save_every == 0 or i_epoch == n_epoch:
# do checkpointing
torch.save(netG.state_dict(), f'{args.outf}/{args.dataset}/models/netG_{dirname}_epoch_{i_epoch}.pth')
torch.save(netD.state_dict(), f'{args.outf}/{args.dataset}/models/netD_{dirname}_epoch_{i_epoch}.pth')