forked from p-hughes/Dirty_business
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesonplot.R
134 lines (96 loc) · 4.03 KB
/
mesonplot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
##this will turn matlab output into a pretty graph without having to think about it.
# install.packages(c("Cairo"), repos="http://cran.r-project.org" )
library(Cairo)
library(plyr)
library(ggplot2)
library(grid)
source("C:/Users/phug7649/Desktop/TXTBIN/R-scripts/functions/make_letter_ids.R")
##input files for matlab:
setwd("C:\\Users\\phug7649\\Documents\\MATLAB")
matrix<-read.table("matrix.csv",sep=",")
end_points<-read.csv("EP.csv",sep=",")
data<-read.csv("DATA.csv",sep=",")
##matlab output files:
centroid_table<-read.csv("mcent.csv",header=FALSE,sep=",")
a<-nrow(centroid_table)
y<-make_letter_ids(nrow(centroid_table))
centroid_table<-cbind(y,centroid_table)
##joining original data to the centroid table, to be used later.
names(centroid_table) <- names(data)
data_cent<-rbind(data,centroid_table)
##creating principal components from the original data.
princomp_main<-princomp(data_cent[,2:ncol(data)],cor=TRUE)
princomp_comp<-princomp_main$scores
##attaching principal components to main data, plotting to ensure we know what it looks like.
#plot(princomp_comp[,1],princomp_comp[,2])
##creating max distance column
data_distances<-read.csv("mdist.csv",sep=",",header=F)
id.matrix<-diag(nrow(centroid_table))
max<-y
id.matrix<-cbind(id.matrix,max)
natural_key<-max
data_cent.prin<-cbind(data_cent,princomp_comp)
names(data_distances)<-make_letter_ids(nrow(centroid_table))
weighting_factor<-read.csv("weighting.csv",sep=",")
number_of_rows<-read.csv("rows.csv",header=FALSE,sep=",")
number_of_end_members<-read.csv("end.csv",header=FALSE,sep=",")
number_of_centroids<-read.csv("cent.csv",header=FALSE,sep=",")
w<-weighting_factor[1,1]
##create the id matrix from the matlab data
##creating max column for data distances
aa<-as.matrix(data_distances)
data_distances$max<-apply(aa,1,which.max)
data_ratio<-data_distances
data_ratio$max<-apply(aa,1,which.max)
max<-make_letter_ids(nrow(centroid_table))
data_distances$max<-max[data_distances$max]
max<-data_distances$max
max<-rbind(c(max,y))
max<-t(max)
data.complete<-cbind(data_cent.prin,max)
datarows<-nrow(data)
position1<-datarows+1
cdatarows<-nrow(data.complete)
centroids.complete<-data.complete[position1:cdatarows,]
emno<-number_of_end_members[1,1]
ceno<-nrow(centroid_table)-emno
soil.id<-rep(c("E", "C"), c(emno, ceno))
centroids.complete<-cbind(centroids.complete,soil.id)
totals<-as.data.frame(table(data_ratio$max))
end.tot<-totals[1:nrow(matrix),]
cent.tot<-totals[nrow(matrix):nrow(totals),]
sum.end<-sum(end.tot[,2])
sum.cent<-sum(cent.tot[,2])
ratio<-(sum.end/(sum.end+sum.cent))*100
ratio<-round(ratio,digits=2)
message(paste0("Weighting ", weighting_factor[1,1],", creating ",ratio, "% end point memberships"))
setwd("C:/Users/phug7649/Desktop/txtbin")
###SEB GOING NUTS (more often referred to as a panel plot)
NUTS<-ggplot(data.complete, aes(x=Comp.1, y=Comp.2), group=max)+
theme_bw() +
geom_point(colour="grey40")+
#stat_bin2d(binwidth=c(1, 1),colour=gray) +
facet_wrap(~ max, nrow=5)+
geom_point(data=centroids.complete, aes(shape=soil.id),size=4, colour="black")+
scale_shape_manual(values=c(16, 17))+
theme(plot.background = element_rect(fill = w))+
# xlim(-12,8)+
# ylim(-7.5,5)+
ggtitle(paste0("Weighting ", weighting_factor[1,1],", creating ",ratio, " percent end point memberships"))+
# theme(panel.margin = unit(5, "lines"))+
coord_equal()
NUTS
ggsave(paste0("nuts", w, number_of_end_members[1,1],".png"),type="cairo")
#Assign colours in one giant plot for Alex.
#hclust(centroids.complete[,2:19])
#qplot(Comp.1,Comp.2,data=data.complete,colour=centroids.complete$soil.id)
combined<-ggplot(data.complete,aes(x=Comp.1,y=Comp.2))+
geom_point(aes(colour=max))+
geom_point(data=centroids.complete,aes(shape=soil.id),size=4)+
scale_shape_manual(values=c(16,17))+
# xlim(-12,8)+
# ylim(-7.5,5)+
ggtitle(paste0("Weighting ", weighting_factor[1,1],", creating ",ratio, " percent end point memberships"))+
coord_equal()
combined
ggsave(paste0("combined", w, number_of_end_members[1,1],".png"),type="cairo")