-
Notifications
You must be signed in to change notification settings - Fork 28
/
lip_densenet.py
200 lines (158 loc) · 7.44 KB
/
lip_densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
__all__ = ['DenseNet', 'densenet121',
'densenet169', 'densenet201', 'densenet161']
model_urls = {
'densenet121': './lip_densenet_121.pth',
}
BOTTLENECK_WIDTH = 128
COEFF = 12.0
def lip2d(x, logit, kernel=3, stride=2, padding=1):
weight = logit.exp()
return F.avg_pool2d(x*weight, kernel, stride, padding)/F.avg_pool2d(weight, kernel, stride, padding)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class SoftGate(nn.Module):
def forward(self, x):
return torch.sigmoid(x).mul(COEFF)
class BottleneckLIP(nn.Module):
def __init__(self, channels):
super(BottleneckLIP, self).__init__()
rp = BOTTLENECK_WIDTH
self.logit = nn.Sequential(
OrderedDict((
('conv1', conv1x1(channels, rp)),
('bn1', nn.InstanceNorm2d(rp, affine=True)),
('relu1', nn.ReLU(inplace=True)),
('conv2', conv3x3(rp, rp)),
('bn2', nn.InstanceNorm2d(rp, affine=True)),
('relu2', nn.ReLU(inplace=True)),
('conv3', conv1x1(rp, channels)),
('bn3', nn.InstanceNorm2d(channels, affine=True)),
('gate', SoftGate()),
))
)
def init_layer(self):
self.logit[6].weight.data.fill_(0)
def forward(self, x):
frac = lip2d(x, self.logit(x), kernel=2, stride=2, padding=0)
return frac
class SimplifiedLIP(nn.Module):
def __init__(self, channels):
super(SimplifiedLIP, self).__init__()
self.logit = nn.Sequential(
OrderedDict((
('conv1', conv3x3(channels, channels)),
('bn1', nn.InstanceNorm2d(channels, affine=True)),
('gate', SoftGate()),
))
)
def init_layer(self):
self.logit[0].weight.data.fill_(0)
def forward(self, x):
frac = lip2d(x, self.logit(x), kernel=3, stride=2, padding=1)
return frac
class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
self.add_module('relu1', nn.ReLU(inplace=True)),
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
growth_rate, kernel_size=1, stride=1, bias=False)),
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
self.add_module('relu2', nn.ReLU(inplace=True)),
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False)),
self.drop_rate = drop_rate
def forward(self, x):
new_features = super(_DenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = F.dropout(
new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1)
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i *
growth_rate, growth_rate, bn_size, drop_rate)
self.add_module('denselayer%d' % (i + 1), layer)
class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.add_module('norm', nn.BatchNorm2d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False))
#self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
self.add_module('pool', BottleneckLIP(num_output_features))
class DenseNet(nn.Module):
r"""Densenet-BC model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes
"""
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):
super(DenseNet, self).__init__()
# First convolution
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(3, num_init_features,
kernel_size=7, stride=2, padding=3, bias=False)),
('norm0', nn.BatchNorm2d(num_init_features)),
('relu0', nn.ReLU(inplace=True)),
#('pool0', nn.MaxPool2d(3, 2, 1)),
('pool0', SimplifiedLIP(num_init_features)),
]))
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(
num_input_features=num_features, num_output_features=num_features // 2)
self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
# Official init from torch repo.
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool2d(out, (1, 1)).view(features.size(0), -1)
out = self.classifier(out)
return out
def densenet121(pretrained=False, **kwargs):
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
**kwargs)
if pretrained:
model.load_state_dict(torch.load(
model_urls['densenet121'], map_location='cpu'))
return model