-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
311 lines (273 loc) · 11.1 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
from PIL import Image
import math
import os
from glob import glob
from pathlib import Path as PathlibPath
import uuid
import cv2
import numpy as np
import torch
from einops import rearrange, repeat
from omegaconf import OmegaConf
from torchvision.transforms import ToTensor
# local imports
from utils.nsfw_and_watermark_dectection import DeepFloydDataFiltering
from utils.helpers import embed_watermark, default, instantiate_from_config
from utils.sizing_strategy import SizingStrategy
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
self.sizing_strategy = SizingStrategy()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.svd_num_frames = 14
svd_num_steps = 25
svd_model_config = "./configs/svd.yaml"
svd_model, svd_filter = self.load_model(
svd_model_config,
self.device,
self.svd_num_frames,
svd_num_steps,
)
self.svd_model = svd_model
self.svd_filter = svd_filter
self.svdxt_num_frames = 25
svdxt_num_steps = 30
svdxt_model_config = "./configs/svd_xt.yaml"
svdxt_model, svdxt_filter = self.load_model(
svdxt_model_config,
self.device,
self.svdxt_num_frames,
svdxt_num_steps,
)
self.svdxt_model = svdxt_model
self.svdxt_filter = svdxt_filter
@torch.inference_mode()
def predict(
self,
input_image: Path = Input(
description="Path to the input image file or folder with image files",
),
num_frames: int = Input(
description="Number of frames to process",
default=None
),
version: str = Input(
description="Version of the model",
choices=[
"svd",
"svd_xt",
],
default="svd"
),
sizing_strategy: str = Input(
description="Decide how to resize the input image",
choices=[
"maintain_aspect_ratio",
"crop_to_16_9",
"use_image_dimensions",
],
default="maintain_aspect_ratio",
),
motion_bucket_id: int = Input(
description="Motion bucket ID for video processing",
default=127
),
cond_aug: float = Input(
description="Condition augmentation factor",
default=0.02,
ge=0
),
seed: int = Input(
description="Seed for random number generation",
default=23
),
fps_id: int = Input(description="Frames per second",
default=6, ge=5, le=30),
decoding_t: int = Input(
description="Number of frames decoded at a time, affects VRAM usage",
default=14,
ge=0
),
) -> Path:
# check that the version is valid
output_folder: Optional[str] = "tmp/"
if version != "svd" and version != "svd_xt":
raise ValueError(f"Version {version} does not exist.")
torch.manual_seed(seed)
# set the model and filter
model = self.svd_model if version == "svd" else self.svdxt_model
filter = self.svd_filter if version == "svd" else self.svdxt_filter
if version == "svd":
num_frames = default(num_frames, self.svd_num_frames)
elif version == "svd_xt":
num_frames = default(num_frames, self.svdxt_num_frames)
image = self.sizing_strategy.apply(sizing_strategy, input_image)
if image.mode == "RGBA":
image = image.convert("RGB")
w, h = image.size
if h % 64 != 0 or w % 64 != 0:
width, height = map(lambda x: x - x % 64, (w, h))
image = image.resize((width, height))
print(
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
)
image = ToTensor()(image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(self.device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
if (H, W) != (576, 1024):
print(
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
)
if motion_bucket_id > 255:
print(
"WARNING: High motion bucket! This may lead to suboptimal performance."
)
if fps_id < 5:
print("WARNING: Small fps value! This may lead to suboptimal performance.")
if fps_id > 30:
print("WARNING: Large fps value! This may lead to suboptimal performance.")
value_dict = {}
value_dict["motion_bucket_id"] = motion_bucket_id
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
value_dict["cond_aug"] = cond_aug
output_path = None
with torch.no_grad():
with torch.autocast(self.device):
batch, batch_uc = self.get_batch(
self.get_unique_embedder_keys_from_conditioner(
model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=self.device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(
uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(
c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=self.device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(self.device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp(
(samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(
output_folder, f"{base_count:06d}.mp4")
output_path = video_path
samples = embed_watermark(samples)
vid = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
# Save frames as individual images
for i, frame in enumerate(vid):
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
cv2.imwrite(
os.path.join(
output_folder, f"frame_{i:06d}.png"), frame
)
# Use ffmpeg to create video from images
os.system(
f"ffmpeg -r {fps_id + 1} -i {output_folder}/frame_%06d.png -c:v libx264 -vf 'fps={fps_id + 1},format=yuv420p' {video_path}"
)
# Remove individual frame images
for file_name in glob(os.path.join(output_folder, "*.png")):
os.remove(file_name)
return Path(output_path)
def get_unique_embedder_keys_from_conditioner(self, conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(self, keys, value_dict, N, T, device):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"],
"1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def load_model(
self,
config: str,
device: str,
num_frames: int,
num_steps: int,
):
config = OmegaConf.load(config)
if device == "cuda":
config.model.params.conditioner_config.params.emb_models[
0
].params.open_clip_embedding_config.params.init_device = device
config.model.params.sampler_config.params.num_steps = num_steps
config.model.params.sampler_config.params.guider_config.params.num_frames = (
num_frames
)
if device == "cuda":
with torch.device(device):
model = instantiate_from_config(config.model).to(device).eval()
else:
model = instantiate_from_config(config.model).to(device).eval()
filter = DeepFloydDataFiltering(verbose=False, device=device)
return model, filter