forked from Trusted-AI/adversarial-robustness-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conftest.py
979 lines (764 loc) · 35.4 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
# MIT License
#
# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import importlib
import json
import logging
import os
import shutil
import tempfile
from typing import Dict, List, TYPE_CHECKING, Union
import warnings
import numpy as np
import pytest
import requests
from art.data_generators import (
KerasDataGenerator,
MXDataGenerator,
PyTorchDataGenerator,
TensorFlowDataGenerator,
TensorFlowV2DataGenerator,
)
from art.defences.preprocessor import FeatureSqueezing, JpegCompression, SpatialSmoothing
from art.estimators.classification import KerasClassifier
from tests.utils import (
ARTTestFixtureNotImplemented,
get_attack_classifier_pt,
get_image_classifier_kr,
get_image_classifier_kr_functional,
get_image_classifier_kr_tf,
get_image_classifier_kr_tf_functional,
get_image_classifier_kr_tf_with_wildcard,
get_image_classifier_mxnet_custom_ini,
get_image_classifier_pt,
get_image_classifier_pt_functional,
get_image_classifier_tf,
get_tabular_classifier_kr,
get_tabular_classifier_pt,
get_tabular_classifier_scikit_list,
get_tabular_classifier_tf,
load_dataset,
master_seed,
)
if TYPE_CHECKING:
import torch
logger = logging.getLogger(__name__)
deep_learning_frameworks = [
"keras", "tensorflow1", "tensorflow2", "tensorflow2v1", "pytorch", "kerastf", "mxnet", "jax"
]
non_deep_learning_frameworks = ["scikitlearn"]
art_supported_frameworks = []
art_supported_frameworks.extend(deep_learning_frameworks)
art_supported_frameworks.extend(non_deep_learning_frameworks)
master_seed(1234)
def get_default_framework():
import tensorflow as tf
if tf.__version__[0] == "2":
default_framework = "tensorflow2"
else:
default_framework = "tensorflow1"
return default_framework
def pytest_addoption(parser):
parser.addoption(
"--framework",
action="store",
default=get_default_framework(),
help="ART tests allow you to specify which framework to use. The default framework used is `tensorflow`. "
"Other options available are {0}".format(art_supported_frameworks),
)
@pytest.fixture
def image_dl_estimator_defended(framework):
def _image_dl_estimator_defended(one_classifier=False, **kwargs):
sess = None
classifier = None
clip_values = (0, 1)
fs = FeatureSqueezing(bit_depth=2, clip_values=clip_values)
defenses = []
if kwargs.get("defenses") is None:
defenses.append(fs)
else:
if "FeatureSqueezing" in kwargs.get("defenses"):
defenses.append(fs)
if "JpegCompression" in kwargs.get("defenses"):
defenses.append(JpegCompression(clip_values=clip_values, apply_predict=True))
if "SpatialSmoothing" in kwargs.get("defenses"):
defenses.append(SpatialSmoothing())
del kwargs["defenses"]
if framework == "tensorflow2":
classifier, _ = get_image_classifier_tf(**kwargs)
if framework == "keras":
classifier = get_image_classifier_kr(**kwargs)
if framework == "kerastf":
classifier = get_image_classifier_kr_tf(**kwargs)
if framework == "pytorch":
classifier = get_image_classifier_pt(**kwargs)
for i, defense in enumerate(defenses):
if "channels_first" in defense.params:
defenses[i].channels_first = classifier.channels_first
if classifier is not None:
classifier.set_params(preprocessing_defences=defenses)
else:
raise ARTTestFixtureNotImplemented(
"no defended image estimator", image_dl_estimator_defended.__name__, framework, {"defenses": defenses}
)
return classifier, sess
return _image_dl_estimator_defended
@pytest.fixture(scope="function")
def image_dl_estimator_for_attack(framework, image_dl_estimator, image_dl_estimator_defended):
def _image_dl_estimator_for_attack(attack, defended=False, **kwargs):
if defended:
potential_classifier, _ = image_dl_estimator_defended(**kwargs)
else:
potential_classifier, _ = image_dl_estimator(**kwargs)
classifier_list = [potential_classifier]
classifier_tested = [
potential_classifier
for potential_classifier in classifier_list
if all(t in type(potential_classifier).__mro__ for t in attack._estimator_requirements)
]
if len(classifier_tested) == 0:
raise ARTTestFixtureNotImplemented(
"no estimator available", image_dl_estimator_for_attack.__name__, framework, {"attack": attack}
)
return classifier_tested[0]
return _image_dl_estimator_for_attack
@pytest.fixture
def estimator_for_attack(framework):
# TODO DO NOT USE THIS FIXTURE this needs to be refactored into image_dl_estimator_for_attack
def _get_attack_classifier_list(**kwargs):
if framework == "pytorch":
return get_attack_classifier_pt(**kwargs)
raise ARTTestFixtureNotImplemented("no estimator available", image_dl_estimator_for_attack.__name__, framework)
return _get_attack_classifier_list
@pytest.fixture(autouse=True)
def setup_tear_down_framework(framework):
# Ran before each test
if framework == "tensorflow1" or framework == "tensorflow2":
import tensorflow as tf
if tf.__version__[0] != "2":
tf.reset_default_graph()
if framework == "tensorflow2v1":
import tensorflow.compat.v1 as tf1
tf1.reset_default_graph()
yield True
# Ran after each test
if framework == "keras":
import keras
keras.backend.clear_session()
@pytest.fixture
def image_iterator(framework, get_default_mnist_subset, default_batch_size):
(x_train_mnist, y_train_mnist), (_, _) = get_default_mnist_subset
def _get_image_iterator():
if framework == "keras" or framework == "kerastf":
from keras.preprocessing.image import ImageDataGenerator
keras_gen = ImageDataGenerator(
width_shift_range=0.075,
height_shift_range=0.075,
rotation_range=12,
shear_range=0.075,
zoom_range=0.05,
fill_mode="constant",
cval=0,
)
return keras_gen.flow(x_train_mnist, y_train_mnist, batch_size=default_batch_size)
if framework == "tensorflow1":
import tensorflow as tf
x_tensor = tf.convert_to_tensor(x_train_mnist.reshape(10, 100, 28, 28, 1))
y_tensor = tf.convert_to_tensor(y_train_mnist.reshape(10, 100, 10))
dataset = tf.data.Dataset.from_tensor_slices((x_tensor, y_tensor))
return dataset.make_initializable_iterator()
if framework == "tensorflow2":
import tensorflow as tf
dataset = tf.data.Dataset.from_tensor_slices((x_train_mnist, y_train_mnist)).batch(default_batch_size)
return dataset
if framework == "pytorch":
import torch # lgtm [py/repeated-import]
# Create tensors from data
x_train_tens = torch.from_numpy(x_train_mnist)
x_train_tens = x_train_tens.float()
y_train_tens = torch.from_numpy(y_train_mnist)
dataset = torch.utils.data.TensorDataset(x_train_tens, y_train_tens)
return torch.utils.data.DataLoader(dataset=dataset, batch_size=default_batch_size, shuffle=True)
if framework == "mxnet":
from mxnet import gluon
dataset = gluon.data.dataset.ArrayDataset(x_train_mnist, y_train_mnist)
return gluon.data.DataLoader(dataset, batch_size=5, shuffle=True)
return None
return _get_image_iterator
@pytest.fixture
def image_data_generator(framework, get_default_mnist_subset, image_iterator, default_batch_size):
def _image_data_generator(**kwargs):
(x_train_mnist, y_train_mnist), (_, _) = get_default_mnist_subset
image_it = image_iterator()
data_generator = None
if framework == "keras" or framework == "kerastf":
data_generator = KerasDataGenerator(
iterator=image_it,
size=x_train_mnist.shape[0],
batch_size=default_batch_size,
)
if framework == "tensorflow1":
data_generator = TensorFlowDataGenerator(
sess=kwargs["sess"],
iterator=image_it,
iterator_type="initializable",
iterator_arg={},
size=x_train_mnist.shape[0],
batch_size=default_batch_size,
)
if framework == "tensorflow2":
data_generator = TensorFlowV2DataGenerator(
iterator=image_it,
size=x_train_mnist.shape[0],
batch_size=default_batch_size,
)
if framework == "pytorch":
data_generator = PyTorchDataGenerator(
iterator=image_it, size=x_train_mnist.shape[0], batch_size=default_batch_size
)
if framework == "mxnet":
data_generator = MXDataGenerator(
iterator=image_it, size=x_train_mnist.shape[0], batch_size=default_batch_size
)
return data_generator
return _image_data_generator
@pytest.fixture
def store_expected_values(request):
"""
Stores expected values to be retrieved by the expected_values fixture
Note1: Numpy arrays MUST be converted to list before being stored as json
Note2: It's possible to store both a framework independent and framework specific value. If both are stored the
framework specific value will be used
:param request:
:return:
"""
def _store_expected_values(values_to_store, framework=""):
framework_name = framework
if framework_name:
framework_name = "_" + framework_name
file_name = request.node.location[0].split("/")[-1][:-3] + ".json"
try:
with open(
os.path.join(os.path.dirname(__file__), os.path.dirname(request.node.location[0]), file_name), "r"
) as f:
expected_values = json.load(f)
except FileNotFoundError:
expected_values = {}
test_name = request.node.name + framework_name
expected_values[test_name] = values_to_store
with open(
os.path.join(os.path.dirname(__file__), os.path.dirname(request.node.location[0]), file_name), "w"
) as f:
json.dump(expected_values, f, indent=4)
return _store_expected_values
@pytest.fixture
def expected_values(framework, request):
"""
Retrieves the expected values that were stored using the store_expected_values fixture
:param request:
:return:
"""
file_name = request.node.location[0].split("/")[-1][:-3] + ".json"
framework_name = framework
if framework_name:
framework_name = "_" + framework_name
def _expected_values():
with open(
os.path.join(os.path.dirname(__file__), os.path.dirname(request.node.location[0]), file_name), "r"
) as f:
expected_values = json.load(f)
# searching first for any framework specific expected value
framework_specific_values = request.node.name + framework_name
if framework_specific_values in expected_values:
return expected_values[framework_specific_values]
elif request.node.name in expected_values:
return expected_values[request.node.name]
else:
raise ARTTestFixtureNotImplemented(
"Couldn't find any expected values for test {0}".format(request.node.name),
expected_values.__name__,
framework_name,
)
return _expected_values
@pytest.fixture(scope="session")
def get_image_classifier_mx_model():
import mxnet # lgtm [py/import-and-import-from]
# TODO needs to be made parameterizable once Mxnet allows multiple identical models to be created in one session
from_logits = True
class Model(mxnet.gluon.nn.Block):
def __init__(self, **kwargs):
super(Model, self).__init__(**kwargs)
self.model = mxnet.gluon.nn.Sequential()
self.model.add(
mxnet.gluon.nn.Conv2D(
channels=1,
kernel_size=7,
activation="relu",
),
mxnet.gluon.nn.MaxPool2D(pool_size=4, strides=4),
mxnet.gluon.nn.Flatten(),
mxnet.gluon.nn.Dense(
10,
activation=None,
),
)
def forward(self, x):
y = self.model(x)
if from_logits:
return y
return y.softmax()
model = Model()
custom_init = get_image_classifier_mxnet_custom_ini()
model.initialize(init=custom_init)
return model
@pytest.fixture
def get_image_classifier_mx_instance(get_image_classifier_mx_model, mnist_shape):
import mxnet # lgtm [py/import-and-import-from]
from art.estimators.classification import MXClassifier
model = get_image_classifier_mx_model
def _get_image_classifier_mx_instance(from_logits=True):
if from_logits is False:
# due to the fact that only 1 instance of get_image_classifier_mx_model can be created in one session
# this will be resolved once Mxnet allows for 2 models with identical weights to be created in 1 session
raise ARTTestFixtureNotImplemented(
"Currently only supporting Mxnet classifier with from_logit set to True",
get_image_classifier_mx_instance.__name__,
framework,
)
loss = mxnet.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=from_logits)
trainer = mxnet.gluon.Trainer(model.collect_params(), "sgd", {"learning_rate": 0.1})
# Get classifier
mxc = MXClassifier(
model=model,
loss=loss,
input_shape=mnist_shape,
# input_shape=(28, 28, 1),
nb_classes=10,
optimizer=trainer,
ctx=None,
channels_first=True,
clip_values=(0, 1),
preprocessing_defences=None,
postprocessing_defences=None,
preprocessing=(0.0, 1.0),
)
return mxc
return _get_image_classifier_mx_instance
@pytest.fixture
def supported_losses_types(framework):
def supported_losses_types():
if framework == "keras":
return ["label", "function_losses", "function_backend"]
if framework == "kerastf":
# if loss_type is not "label" and loss_name not in ["categorical_hinge", "kullback_leibler_divergence"]:
return ["label", "function", "class"]
raise ARTTestFixtureNotImplemented(
"Could not find supported_losses_types", supported_losses_types.__name__, framework
)
return supported_losses_types
@pytest.fixture
def supported_losses_logit(framework):
def _supported_losses_logit():
if framework == "keras":
return ["categorical_crossentropy_function_backend", "sparse_categorical_crossentropy_function_backend"]
if framework == "kerastf":
# if loss_type is not "label" and loss_name not in ["categorical_hinge", "kullback_leibler_divergence"]:
return [
"categorical_crossentropy_function",
"categorical_crossentropy_class",
"sparse_categorical_crossentropy_function",
"sparse_categorical_crossentropy_class",
]
raise ARTTestFixtureNotImplemented(
"Could not find supported_losses_logit", supported_losses_logit.__name__, framework
)
return _supported_losses_logit
@pytest.fixture
def supported_losses_proba(framework):
def _supported_losses_proba():
if framework == "keras":
return [
"categorical_hinge_function_losses",
"categorical_crossentropy_label",
"categorical_crossentropy_function_losses",
"categorical_crossentropy_function_backend",
"sparse_categorical_crossentropy_label",
"sparse_categorical_crossentropy_function_losses",
"sparse_categorical_crossentropy_function_backend",
]
if framework == "kerastf":
return [
"categorical_hinge_function",
"categorical_hinge_class",
"categorical_crossentropy_label",
"categorical_crossentropy_function",
"categorical_crossentropy_class",
"sparse_categorical_crossentropy_label",
"sparse_categorical_crossentropy_function",
"sparse_categorical_crossentropy_class",
# "kullback_leibler_divergence_function",
"kullback_leibler_divergence_class",
]
raise ARTTestFixtureNotImplemented(
"Could not find supported_losses_proba", supported_losses_proba.__name__, framework
)
return _supported_losses_proba
@pytest.fixture
def image_dl_estimator(framework, get_image_classifier_mx_instance):
def _image_dl_estimator(functional=False, **kwargs):
sess = None
wildcard = False
classifier = None
if kwargs.get("wildcard") is not None:
if kwargs.get("wildcard") is True:
wildcard = True
del kwargs["wildcard"]
if framework == "keras":
if wildcard is False and functional is False:
if functional:
classifier = get_image_classifier_kr_functional(**kwargs)
else:
try:
classifier = get_image_classifier_kr(**kwargs)
except NotImplementedError:
raise ARTTestFixtureNotImplemented(
"This combination of loss function options is currently not supported.",
image_dl_estimator.__name__,
framework,
)
if framework == "tensorflow1" or framework == "tensorflow2":
if wildcard is False and functional is False:
classifier, sess = get_image_classifier_tf(**kwargs)
return classifier, sess
if framework == "pytorch":
if not wildcard:
if functional:
classifier = get_image_classifier_pt_functional(**kwargs)
else:
classifier = get_image_classifier_pt(**kwargs)
if framework == "kerastf":
if wildcard:
classifier = get_image_classifier_kr_tf_with_wildcard(**kwargs)
else:
if functional:
classifier = get_image_classifier_kr_tf_functional(**kwargs)
else:
classifier = get_image_classifier_kr_tf(**kwargs)
if framework == "mxnet":
if wildcard is False and functional is False:
classifier = get_image_classifier_mx_instance(**kwargs)
if classifier is None:
raise ARTTestFixtureNotImplemented(
"no test deep learning estimator available", image_dl_estimator.__name__, framework
)
return classifier, sess
return _image_dl_estimator
@pytest.fixture
def art_warning(request):
def _art_warning(exception):
if type(exception) is ARTTestFixtureNotImplemented:
if request.node.get_closest_marker("framework_agnostic"):
if not request.node.get_closest_marker("parametrize"):
raise Exception(
"This test has marker framework_agnostic decorator which means it will only be ran "
"once. However the ART test exception was thrown, hence it is never run fully. "
)
elif (
request.node.get_closest_marker("only_with_platform")
and len(request.node.get_closest_marker("only_with_platform").args) == 1
):
raise Exception(
"This test has marker only_with_platform decorator which means it will only be ran "
"once. However the ARTTestFixtureNotImplemented exception was thrown, hence it is "
"never run fully. "
)
# NotImplementedErrors are raised in ART whenever a test model does not exist for a specific
# model/framework combination. By catching there here, we can provide a report at the end of each
# pytest run list all models requiring to be implemented.
warnings.warn(UserWarning(exception))
else:
raise exception
return _art_warning
@pytest.fixture
def decision_tree_estimator(framework):
def _decision_tree_estimator(clipped=True):
if framework == "scikitlearn":
return get_tabular_classifier_scikit_list(clipped=clipped, model_list_names=["decisionTreeClassifier"])[0]
raise ARTTestFixtureNotImplemented(
"no test decision_tree_classifier available", decision_tree_estimator.__name__, framework
)
return _decision_tree_estimator
@pytest.fixture
def tabular_dl_estimator(framework):
def _tabular_dl_estimator(clipped=True):
classifier = None
if framework == "keras":
if clipped:
classifier = get_tabular_classifier_kr()
else:
kr_classifier = get_tabular_classifier_kr()
classifier = KerasClassifier(model=kr_classifier.model, use_logits=False, channels_first=True)
if framework == "tensorflow1" or framework == "tensorflow2":
if clipped:
classifier, _ = get_tabular_classifier_tf()
if framework == "pytorch":
if clipped:
classifier = get_tabular_classifier_pt()
if classifier is None:
raise ARTTestFixtureNotImplemented(
"no deep learning tabular estimator available", tabular_dl_estimator.__name__, framework
)
return classifier
return _tabular_dl_estimator
@pytest.fixture(scope="function")
def create_test_image(create_test_dir):
test_dir = create_test_dir
# Download one ImageNet pic for tests
url = "http://farm1.static.flickr.com/163/381342603_81db58bea4.jpg"
result = requests.get(url, stream=True)
if result.status_code == 200:
image = result.raw.read()
f = open(os.path.join(test_dir, "test.jpg"), "wb")
f.write(image)
f.close()
yield os.path.join(test_dir, "test.jpg")
@pytest.fixture(scope="session")
def framework(request):
ml_framework = request.config.getoption("--framework")
if ml_framework == "tensorflow":
import tensorflow as tf
if tf.__version__[0] == "2":
ml_framework = "tensorflow2"
else:
ml_framework = "tensorflow1"
if ml_framework not in art_supported_frameworks:
raise Exception(
"framework value {0} is unsupported. Please use one of these valid values: {1}".format(
ml_framework, " ".join(art_supported_frameworks)
)
)
# if utils_test.is_valid_framework(framework):
# raise Exception("The framework specified was incorrect. Valid options available
# are {0}".format(art_supported_frameworks))
return ml_framework
@pytest.fixture(scope="session")
def default_batch_size():
yield 16
@pytest.fixture(scope="session")
def load_iris_dataset():
logging.info("Loading Iris dataset")
(x_train_iris, y_train_iris), (x_test_iris, y_test_iris), _, _ = load_dataset("iris")
yield (x_train_iris, y_train_iris), (x_test_iris, y_test_iris)
@pytest.fixture(scope="function")
def get_iris_dataset(load_iris_dataset, framework):
(x_train_iris, y_train_iris), (x_test_iris, y_test_iris) = load_iris_dataset
x_train_iris_original = x_train_iris.copy()
y_train_iris_original = y_train_iris.copy()
x_test_iris_original = x_test_iris.copy()
y_test_iris_original = y_test_iris.copy()
yield (x_train_iris, y_train_iris), (x_test_iris, y_test_iris)
np.testing.assert_array_almost_equal(x_train_iris_original, x_train_iris, decimal=3)
np.testing.assert_array_almost_equal(y_train_iris_original, y_train_iris, decimal=3)
np.testing.assert_array_almost_equal(x_test_iris_original, x_test_iris, decimal=3)
np.testing.assert_array_almost_equal(y_test_iris_original, y_test_iris, decimal=3)
@pytest.fixture(scope="session")
def load_diabetes_dataset():
logging.info("Loading Diabetes dataset")
(x_train_diabetes, y_train_diabetes), (x_test_diabetes, y_test_diabetes), _, _ = load_dataset("diabetes")
yield (x_train_diabetes, y_train_diabetes), (x_test_diabetes, y_test_diabetes)
@pytest.fixture(scope="function")
def get_diabetes_dataset(load_diabetes_dataset, framework):
(x_train_diabetes, y_train_diabetes), (x_test_diabetes, y_test_diabetes) = load_diabetes_dataset
x_train_diabetes_original = x_train_diabetes.copy()
y_train_diabetes_original = y_train_diabetes.copy()
x_test_diabetes_original = x_test_diabetes.copy()
y_test_diabetes_original = y_test_diabetes.copy()
yield (x_train_diabetes, y_train_diabetes), (x_test_diabetes, y_test_diabetes)
np.testing.assert_array_almost_equal(x_train_diabetes_original, x_train_diabetes, decimal=3)
np.testing.assert_array_almost_equal(y_train_diabetes_original, y_train_diabetes, decimal=3)
np.testing.assert_array_almost_equal(x_test_diabetes_original, x_test_diabetes, decimal=3)
np.testing.assert_array_almost_equal(y_test_diabetes_original, y_test_diabetes, decimal=3)
@pytest.fixture(scope="session")
def default_dataset_subset_sizes():
n_train = 1000
n_test = 100
yield n_train, n_test
@pytest.fixture()
def mnist_shape(framework):
if framework == "pytorch" or framework == "mxnet":
return (1, 28, 28)
else:
return (28, 28, 1)
@pytest.fixture()
def get_default_mnist_subset(get_mnist_dataset, default_dataset_subset_sizes, mnist_shape):
(x_train_mnist, y_train_mnist), (x_test_mnist, y_test_mnist) = get_mnist_dataset
n_train, n_test = default_dataset_subset_sizes
x_train_mnist = np.reshape(x_train_mnist, (x_train_mnist.shape[0],) + mnist_shape).astype(np.float32)
x_test_mnist = np.reshape(x_test_mnist, (x_test_mnist.shape[0],) + mnist_shape).astype(np.float32)
yield (x_train_mnist[:n_train], y_train_mnist[:n_train]), (x_test_mnist[:n_test], y_test_mnist[:n_test])
@pytest.fixture(scope="session")
def load_mnist_dataset():
logging.info("Loading mnist")
(x_train_mnist, y_train_mnist), (x_test_mnist, y_test_mnist), _, _ = load_dataset("mnist")
yield (x_train_mnist, y_train_mnist), (x_test_mnist, y_test_mnist)
@pytest.fixture(scope="function")
def create_test_dir():
test_dir = tempfile.mkdtemp()
yield test_dir
shutil.rmtree(test_dir)
@pytest.fixture(scope="function")
def get_mnist_dataset(load_mnist_dataset, mnist_shape):
(x_train_mnist, y_train_mnist), (x_test_mnist, y_test_mnist) = load_mnist_dataset
x_train_mnist = np.reshape(x_train_mnist, (x_train_mnist.shape[0],) + mnist_shape).astype(np.float32)
x_test_mnist = np.reshape(x_test_mnist, (x_test_mnist.shape[0],) + mnist_shape).astype(np.float32)
x_train_mnist_original = x_train_mnist.copy()
y_train_mnist_original = y_train_mnist.copy()
x_test_mnist_original = x_test_mnist.copy()
y_test_mnist_original = y_test_mnist.copy()
yield (x_train_mnist, y_train_mnist), (x_test_mnist, y_test_mnist)
# Check that the test data has not been modified, only catches changes in attack.generate if self has been used
np.testing.assert_array_almost_equal(x_train_mnist_original, x_train_mnist, decimal=3)
np.testing.assert_array_almost_equal(y_train_mnist_original, y_train_mnist, decimal=3)
np.testing.assert_array_almost_equal(x_test_mnist_original, x_test_mnist, decimal=3)
np.testing.assert_array_almost_equal(y_test_mnist_original, y_test_mnist, decimal=3)
# ART test fixture to skip test for specific framework values
# eg: @pytest.mark.only_with_platform("tensorflow")
@pytest.fixture(autouse=True)
def only_with_platform(request, framework):
if request.node.get_closest_marker("only_with_platform"):
if framework not in request.node.get_closest_marker("only_with_platform").args:
pytest.skip("skipped on this platform: {}".format(framework))
# ART test fixture to skip test for specific framework values
# eg: @pytest.mark.skip_framework("tensorflow", "keras", "pytorch", "scikitlearn",
# "mxnet", "kerastf", "non_dl_frameworks", "dl_frameworks")
@pytest.fixture(autouse=True)
def skip_by_framework(request, framework):
if request.node.get_closest_marker("skip_framework"):
framework_to_skip_list = list(request.node.get_closest_marker("skip_framework").args)
if "dl_frameworks" in framework_to_skip_list:
framework_to_skip_list.extend(deep_learning_frameworks)
if "non_dl_frameworks" in framework_to_skip_list:
framework_to_skip_list.extend(non_deep_learning_frameworks)
if "tensorflow" in framework_to_skip_list:
framework_to_skip_list.append("tensorflow1")
framework_to_skip_list.append("tensorflow2")
framework_to_skip_list.append("tensorflow2v1")
if framework in framework_to_skip_list:
pytest.skip("skipped on this platform: {}".format(framework))
@pytest.fixture
def make_customer_record():
def _make_customer_record(name):
return {"name": name, "orders": []}
return _make_customer_record
@pytest.fixture(autouse=True)
def framework_agnostic(request, framework):
if request.node.get_closest_marker("framework_agnostic"):
if framework != get_default_framework():
pytest.skip("framework agnostic test skipped for framework : {}".format(framework))
# ART test fixture to skip test for specific required modules
# eg: @pytest.mark.skip_module("deepspeech_pytorch", "apex.amp", "object_detection")
@pytest.fixture(autouse=True)
def skip_by_module(request):
if request.node.get_closest_marker("skip_module"):
modules_from_args = request.node.get_closest_marker("skip_module").args
# separate possible parent modules and test them first
modules_parents = [m.split(".", 1)[0] for m in modules_from_args]
# merge with modules including submodules (Note: sort ensures that parent comes first)
modules_full = sorted(set(modules_parents).union(modules_from_args))
for module in modules_full:
if module in modules_full:
module_spec = importlib.util.find_spec(module)
module_found = module_spec is not None
if not module_found:
pytest.skip(f"Test skipped because package {module} not available.")
@pytest.fixture()
def fix_get_rcnn():
from art.estimators.estimator import BaseEstimator, LossGradientsMixin
from art.estimators.object_detection.object_detector import ObjectDetectorMixin
class DummyObjectDetector(ObjectDetectorMixin, LossGradientsMixin, BaseEstimator):
def __init__(self):
self._clip_values = (0, 1)
self.channels_first = False
self._input_shape = None
self._compute_loss_count = 1
def loss_gradient(self, x: np.ndarray, y: None, **kwargs):
return np.ones_like(x)
def fit(self, x: np.ndarray, y, batch_size: int = 128, nb_epochs: int = 20, **kwargs):
raise NotImplementedError
def predict(self, x: np.ndarray, batch_size: int = 128, **kwargs):
dict_i = {"boxes": np.array([[0.1, 0.2, 0.3, 0.4]]), "labels": np.array([[2]]), "scores": np.array([[0.8]])}
return [dict_i] * x.shape[0]
@property
def native_label_is_pytorch_format(self):
return True
@property
def input_shape(self):
return self._input_shape
def compute_losses(
self, x: np.ndarray, y: Union[List[Dict[str, np.ndarray]], List[Dict[str, "torch.Tensor"]]]
) -> Dict[str, np.ndarray]:
losses_dict = {
"loss_classifier": np.array(0.43572357, dtype=float),
"loss_box_reg": np.array(0.17341757, dtype=float),
"loss_objectness": np.array(0.02198849, dtype=float),
"loss_rpn_box_reg": np.array(0.03471708, dtype=float),
}
return losses_dict
def compute_loss(
self, x: np.ndarray, y: Union[List[Dict[str, np.ndarray]], List[Dict[str, "torch.Tensor"]]], **kwargs
) -> Union[np.ndarray, "torch.Tensor"]:
self._compute_loss_count += 1
loss = 0.43572357 / self._compute_loss_count
return loss
frcnn = DummyObjectDetector()
return frcnn
@pytest.fixture()
def fix_get_goturn():
from art.estimators.estimator import BaseEstimator, LossGradientsMixin
from art.estimators.object_tracking.object_tracker import ObjectTrackerMixin
class DummyObjectTracker(ObjectTrackerMixin, LossGradientsMixin, BaseEstimator):
def __init__(self):
super().__init__(
model=None,
clip_values=(0, 1),
preprocessing_defences=None,
postprocessing_defences=None,
preprocessing=(0, 1),
)
import torch # lgtm [py/repeated-import]
self.channels_first = False
self._input_shape = None
self.postprocessing_defences = None
self.device = torch.device("cpu")
def loss_gradient(self, x: np.ndarray, y: None, **kwargs):
return np.ones_like(x)
def fit(self, x: np.ndarray, y, batch_size: int = 128, nb_epochs: int = 20, **kwargs):
raise NotImplementedError
def predict(self, x: np.ndarray, batch_size: int = 128, **kwargs):
boxes_list = list()
for i in range(x.shape[1]):
boxes_list.append([0.1, 0.2, 0.3, 0.4])
dict_i = {"boxes": np.array(boxes_list), "labels": np.array([[2]]), "scores": np.array([[0.8]])}
return [dict_i] * x.shape[0]
@property
def native_label_is_pytorch_format(self):
return True
@property
def input_shape(self):
return self._input_shape
goturn = DummyObjectTracker()
return goturn