|
| 1 | +from collections.abc import Sequence |
| 2 | + |
| 3 | + |
| 4 | +def assign_ranks(data: Sequence[float]) -> list[int]: |
| 5 | + """ |
| 6 | + Assigns ranks to elements in the array. |
| 7 | +
|
| 8 | + :param data: List of floats. |
| 9 | + :return: List of ints representing the ranks. |
| 10 | +
|
| 11 | + Example: |
| 12 | + >>> assign_ranks([3.2, 1.5, 4.0, 2.7, 5.1]) |
| 13 | + [3, 1, 4, 2, 5] |
| 14 | +
|
| 15 | + >>> assign_ranks([10.5, 8.1, 12.4, 9.3, 11.0]) |
| 16 | + [3, 1, 5, 2, 4] |
| 17 | + """ |
| 18 | + ranked_data = sorted((value, index) for index, value in enumerate(data)) |
| 19 | + ranks = [0] * len(data) |
| 20 | + |
| 21 | + for position, (_, index) in enumerate(ranked_data): |
| 22 | + ranks[index] = position + 1 |
| 23 | + |
| 24 | + return ranks |
| 25 | + |
| 26 | + |
| 27 | +def calculate_spearman_rank_correlation( |
| 28 | + variable_1: Sequence[float], variable_2: Sequence[float] |
| 29 | +) -> float: |
| 30 | + """ |
| 31 | + Calculates Spearman's rank correlation coefficient. |
| 32 | +
|
| 33 | + :param variable_1: List of floats representing the first variable. |
| 34 | + :param variable_2: List of floats representing the second variable. |
| 35 | + :return: Spearman's rank correlation coefficient. |
| 36 | +
|
| 37 | + Example Usage: |
| 38 | +
|
| 39 | + >>> x = [1, 2, 3, 4, 5] |
| 40 | + >>> y = [5, 4, 3, 2, 1] |
| 41 | + >>> calculate_spearman_rank_correlation(x, y) |
| 42 | + -1.0 |
| 43 | +
|
| 44 | + >>> x = [1, 2, 3, 4, 5] |
| 45 | + >>> y = [2, 4, 6, 8, 10] |
| 46 | + >>> calculate_spearman_rank_correlation(x, y) |
| 47 | + 1.0 |
| 48 | +
|
| 49 | + >>> x = [1, 2, 3, 4, 5] |
| 50 | + >>> y = [5, 1, 2, 9, 5] |
| 51 | + >>> calculate_spearman_rank_correlation(x, y) |
| 52 | + 0.6 |
| 53 | + """ |
| 54 | + n = len(variable_1) |
| 55 | + rank_var1 = assign_ranks(variable_1) |
| 56 | + rank_var2 = assign_ranks(variable_2) |
| 57 | + |
| 58 | + # Calculate differences of ranks |
| 59 | + d = [rx - ry for rx, ry in zip(rank_var1, rank_var2)] |
| 60 | + |
| 61 | + # Calculate the sum of squared differences |
| 62 | + d_squared = sum(di**2 for di in d) |
| 63 | + |
| 64 | + # Calculate the Spearman's rank correlation coefficient |
| 65 | + rho = 1 - (6 * d_squared) / (n * (n**2 - 1)) |
| 66 | + |
| 67 | + return rho |
| 68 | + |
| 69 | + |
| 70 | +if __name__ == "__main__": |
| 71 | + import doctest |
| 72 | + |
| 73 | + doctest.testmod() |
| 74 | + |
| 75 | + # Example usage: |
| 76 | + print( |
| 77 | + f"{calculate_spearman_rank_correlation([1, 2, 3, 4, 5], [2, 4, 6, 8, 10]) = }" |
| 78 | + ) |
| 79 | + |
| 80 | + print(f"{calculate_spearman_rank_correlation([1, 2, 3, 4, 5], [5, 4, 3, 2, 1]) = }") |
| 81 | + |
| 82 | + print(f"{calculate_spearman_rank_correlation([1, 2, 3, 4, 5], [5, 1, 2, 9, 5]) = }") |
0 commit comments