|
| 1 | +""" |
| 2 | +See https://en.wikipedia.org/wiki/Bloom_filter |
| 3 | +
|
| 4 | +The use of this data structure is to test membership in a set. |
| 5 | +Compared to Python's built-in set() it is more space-efficient. |
| 6 | +In the following example, only 8 bits of memory will be used: |
| 7 | +>>> bloom = Bloom(size=8) |
| 8 | +
|
| 9 | +Initially, the filter contains all zeros: |
| 10 | +>>> bloom.bitstring |
| 11 | +'00000000' |
| 12 | +
|
| 13 | +When an element is added, two bits are set to 1 |
| 14 | +since there are 2 hash functions in this implementation: |
| 15 | +>>> "Titanic" in bloom |
| 16 | +False |
| 17 | +>>> bloom.add("Titanic") |
| 18 | +>>> bloom.bitstring |
| 19 | +'01100000' |
| 20 | +>>> "Titanic" in bloom |
| 21 | +True |
| 22 | +
|
| 23 | +However, sometimes only one bit is added |
| 24 | +because both hash functions return the same value |
| 25 | +>>> bloom.add("Avatar") |
| 26 | +>>> "Avatar" in bloom |
| 27 | +True |
| 28 | +>>> bloom.format_hash("Avatar") |
| 29 | +'00000100' |
| 30 | +>>> bloom.bitstring |
| 31 | +'01100100' |
| 32 | +
|
| 33 | +Not added elements should return False ... |
| 34 | +>>> not_present_films = ("The Godfather", "Interstellar", "Parasite", "Pulp Fiction") |
| 35 | +>>> { |
| 36 | +... film: bloom.format_hash(film) for film in not_present_films |
| 37 | +... } # doctest: +NORMALIZE_WHITESPACE |
| 38 | +{'The Godfather': '00000101', |
| 39 | + 'Interstellar': '00000011', |
| 40 | + 'Parasite': '00010010', |
| 41 | + 'Pulp Fiction': '10000100'} |
| 42 | +>>> any(film in bloom for film in not_present_films) |
| 43 | +False |
| 44 | +
|
| 45 | +but sometimes there are false positives: |
| 46 | +>>> "Ratatouille" in bloom |
| 47 | +True |
| 48 | +>>> bloom.format_hash("Ratatouille") |
| 49 | +'01100000' |
| 50 | +
|
| 51 | +The probability increases with the number of elements added. |
| 52 | +The probability decreases with the number of bits in the bitarray. |
| 53 | +>>> bloom.estimated_error_rate |
| 54 | +0.140625 |
| 55 | +>>> bloom.add("The Godfather") |
| 56 | +>>> bloom.estimated_error_rate |
| 57 | +0.25 |
| 58 | +>>> bloom.bitstring |
| 59 | +'01100101' |
| 60 | +""" |
| 61 | +from hashlib import md5, sha256 |
| 62 | + |
| 63 | +HASH_FUNCTIONS = (sha256, md5) |
| 64 | + |
| 65 | + |
| 66 | +class Bloom: |
| 67 | + def __init__(self, size: int = 8) -> None: |
| 68 | + self.bitarray = 0b0 |
| 69 | + self.size = size |
| 70 | + |
| 71 | + def add(self, value: str) -> None: |
| 72 | + h = self.hash_(value) |
| 73 | + self.bitarray |= h |
| 74 | + |
| 75 | + def exists(self, value: str) -> bool: |
| 76 | + h = self.hash_(value) |
| 77 | + return (h & self.bitarray) == h |
| 78 | + |
| 79 | + def __contains__(self, other: str) -> bool: |
| 80 | + return self.exists(other) |
| 81 | + |
| 82 | + def format_bin(self, bitarray: int) -> str: |
| 83 | + res = bin(bitarray)[2:] |
| 84 | + return res.zfill(self.size) |
| 85 | + |
| 86 | + @property |
| 87 | + def bitstring(self) -> str: |
| 88 | + return self.format_bin(self.bitarray) |
| 89 | + |
| 90 | + def hash_(self, value: str) -> int: |
| 91 | + res = 0b0 |
| 92 | + for func in HASH_FUNCTIONS: |
| 93 | + position = ( |
| 94 | + int.from_bytes(func(value.encode()).digest(), "little") % self.size |
| 95 | + ) |
| 96 | + res |= 2**position |
| 97 | + return res |
| 98 | + |
| 99 | + def format_hash(self, value: str) -> str: |
| 100 | + return self.format_bin(self.hash_(value)) |
| 101 | + |
| 102 | + @property |
| 103 | + def estimated_error_rate(self) -> float: |
| 104 | + n_ones = bin(self.bitarray).count("1") |
| 105 | + return (n_ones / self.size) ** len(HASH_FUNCTIONS) |
0 commit comments