|
| 1 | +""" |
| 2 | +Demonstration of the Automatic Differentiation (Reverse mode). |
| 3 | +
|
| 4 | +Reference: https://en.wikipedia.org/wiki/Automatic_differentiation |
| 5 | +
|
| 6 | +Author: Poojan Smart |
| 7 | +Email: smrtpoojan@gmail.com |
| 8 | +""" |
| 9 | +from __future__ import annotations |
| 10 | + |
| 11 | +from collections import defaultdict |
| 12 | +from enum import Enum |
| 13 | +from types import TracebackType |
| 14 | +from typing import Any |
| 15 | + |
| 16 | +import numpy as np |
| 17 | +from typing_extensions import Self # noqa: UP035 |
| 18 | + |
| 19 | + |
| 20 | +class OpType(Enum): |
| 21 | + """ |
| 22 | + Class represents list of supported operations on Variable for gradient calculation. |
| 23 | + """ |
| 24 | + |
| 25 | + ADD = 0 |
| 26 | + SUB = 1 |
| 27 | + MUL = 2 |
| 28 | + DIV = 3 |
| 29 | + MATMUL = 4 |
| 30 | + POWER = 5 |
| 31 | + NOOP = 6 |
| 32 | + |
| 33 | + |
| 34 | +class Variable: |
| 35 | + """ |
| 36 | + Class represents n-dimensional object which is used to wrap numpy array on which |
| 37 | + operations will be performed and the gradient will be calculated. |
| 38 | +
|
| 39 | + Examples: |
| 40 | + >>> Variable(5.0) |
| 41 | + Variable(5.0) |
| 42 | + >>> Variable([5.0, 2.9]) |
| 43 | + Variable([5. 2.9]) |
| 44 | + >>> Variable([5.0, 2.9]) + Variable([1.0, 5.5]) |
| 45 | + Variable([6. 8.4]) |
| 46 | + >>> Variable([[8.0, 10.0]]) |
| 47 | + Variable([[ 8. 10.]]) |
| 48 | + """ |
| 49 | + |
| 50 | + def __init__(self, value: Any) -> None: |
| 51 | + self.value = np.array(value) |
| 52 | + |
| 53 | + # pointers to the operations to which the Variable is input |
| 54 | + self.param_to: list[Operation] = [] |
| 55 | + # pointer to the operation of which the Variable is output of |
| 56 | + self.result_of: Operation = Operation(OpType.NOOP) |
| 57 | + |
| 58 | + def __repr__(self) -> str: |
| 59 | + return f"Variable({self.value})" |
| 60 | + |
| 61 | + def to_ndarray(self) -> np.ndarray: |
| 62 | + return self.value |
| 63 | + |
| 64 | + def __add__(self, other: Variable) -> Variable: |
| 65 | + result = Variable(self.value + other.value) |
| 66 | + |
| 67 | + with GradientTracker() as tracker: |
| 68 | + # if tracker is enabled, computation graph will be updated |
| 69 | + if tracker.enabled: |
| 70 | + tracker.append(OpType.ADD, params=[self, other], output=result) |
| 71 | + return result |
| 72 | + |
| 73 | + def __sub__(self, other: Variable) -> Variable: |
| 74 | + result = Variable(self.value - other.value) |
| 75 | + |
| 76 | + with GradientTracker() as tracker: |
| 77 | + # if tracker is enabled, computation graph will be updated |
| 78 | + if tracker.enabled: |
| 79 | + tracker.append(OpType.SUB, params=[self, other], output=result) |
| 80 | + return result |
| 81 | + |
| 82 | + def __mul__(self, other: Variable) -> Variable: |
| 83 | + result = Variable(self.value * other.value) |
| 84 | + |
| 85 | + with GradientTracker() as tracker: |
| 86 | + # if tracker is enabled, computation graph will be updated |
| 87 | + if tracker.enabled: |
| 88 | + tracker.append(OpType.MUL, params=[self, other], output=result) |
| 89 | + return result |
| 90 | + |
| 91 | + def __truediv__(self, other: Variable) -> Variable: |
| 92 | + result = Variable(self.value / other.value) |
| 93 | + |
| 94 | + with GradientTracker() as tracker: |
| 95 | + # if tracker is enabled, computation graph will be updated |
| 96 | + if tracker.enabled: |
| 97 | + tracker.append(OpType.DIV, params=[self, other], output=result) |
| 98 | + return result |
| 99 | + |
| 100 | + def __matmul__(self, other: Variable) -> Variable: |
| 101 | + result = Variable(self.value @ other.value) |
| 102 | + |
| 103 | + with GradientTracker() as tracker: |
| 104 | + # if tracker is enabled, computation graph will be updated |
| 105 | + if tracker.enabled: |
| 106 | + tracker.append(OpType.MATMUL, params=[self, other], output=result) |
| 107 | + return result |
| 108 | + |
| 109 | + def __pow__(self, power: int) -> Variable: |
| 110 | + result = Variable(self.value**power) |
| 111 | + |
| 112 | + with GradientTracker() as tracker: |
| 113 | + # if tracker is enabled, computation graph will be updated |
| 114 | + if tracker.enabled: |
| 115 | + tracker.append( |
| 116 | + OpType.POWER, |
| 117 | + params=[self], |
| 118 | + output=result, |
| 119 | + other_params={"power": power}, |
| 120 | + ) |
| 121 | + return result |
| 122 | + |
| 123 | + def add_param_to(self, param_to: Operation) -> None: |
| 124 | + self.param_to.append(param_to) |
| 125 | + |
| 126 | + def add_result_of(self, result_of: Operation) -> None: |
| 127 | + self.result_of = result_of |
| 128 | + |
| 129 | + |
| 130 | +class Operation: |
| 131 | + """ |
| 132 | + Class represents operation between single or two Variable objects. |
| 133 | + Operation objects contains type of operation, pointers to input Variable |
| 134 | + objects and pointer to resulting Variable from the operation. |
| 135 | + """ |
| 136 | + |
| 137 | + def __init__( |
| 138 | + self, |
| 139 | + op_type: OpType, |
| 140 | + other_params: dict | None = None, |
| 141 | + ) -> None: |
| 142 | + self.op_type = op_type |
| 143 | + self.other_params = {} if other_params is None else other_params |
| 144 | + |
| 145 | + def add_params(self, params: list[Variable]) -> None: |
| 146 | + self.params = params |
| 147 | + |
| 148 | + def add_output(self, output: Variable) -> None: |
| 149 | + self.output = output |
| 150 | + |
| 151 | + def __eq__(self, value) -> bool: |
| 152 | + return self.op_type == value if isinstance(value, OpType) else False |
| 153 | + |
| 154 | + |
| 155 | +class GradientTracker: |
| 156 | + """ |
| 157 | + Class contains methods to compute partial derivatives of Variable |
| 158 | + based on the computation graph. |
| 159 | +
|
| 160 | + Examples: |
| 161 | +
|
| 162 | + >>> with GradientTracker() as tracker: |
| 163 | + ... a = Variable([2.0, 5.0]) |
| 164 | + ... b = Variable([1.0, 2.0]) |
| 165 | + ... m = Variable([1.0, 2.0]) |
| 166 | + ... c = a + b |
| 167 | + ... d = a * b |
| 168 | + ... e = c / d |
| 169 | + >>> tracker.gradient(e, a) |
| 170 | + array([-0.25, -0.04]) |
| 171 | + >>> tracker.gradient(e, b) |
| 172 | + array([-1. , -0.25]) |
| 173 | + >>> tracker.gradient(e, m) is None |
| 174 | + True |
| 175 | +
|
| 176 | + >>> with GradientTracker() as tracker: |
| 177 | + ... a = Variable([[2.0, 5.0]]) |
| 178 | + ... b = Variable([[1.0], [2.0]]) |
| 179 | + ... c = a @ b |
| 180 | + >>> tracker.gradient(c, a) |
| 181 | + array([[1., 2.]]) |
| 182 | + >>> tracker.gradient(c, b) |
| 183 | + array([[2.], |
| 184 | + [5.]]) |
| 185 | +
|
| 186 | + >>> with GradientTracker() as tracker: |
| 187 | + ... a = Variable([[2.0, 5.0]]) |
| 188 | + ... b = a ** 3 |
| 189 | + >>> tracker.gradient(b, a) |
| 190 | + array([[12., 75.]]) |
| 191 | + """ |
| 192 | + |
| 193 | + instance = None |
| 194 | + |
| 195 | + def __new__(cls) -> Self: |
| 196 | + """ |
| 197 | + Executes at the creation of class object and returns if |
| 198 | + object is already created. This class follows singleton |
| 199 | + design pattern. |
| 200 | + """ |
| 201 | + if cls.instance is None: |
| 202 | + cls.instance = super().__new__(cls) |
| 203 | + return cls.instance |
| 204 | + |
| 205 | + def __init__(self) -> None: |
| 206 | + self.enabled = False |
| 207 | + |
| 208 | + def __enter__(self) -> Self: |
| 209 | + self.enabled = True |
| 210 | + return self |
| 211 | + |
| 212 | + def __exit__( |
| 213 | + self, |
| 214 | + exc_type: type[BaseException] | None, |
| 215 | + exc: BaseException | None, |
| 216 | + traceback: TracebackType | None, |
| 217 | + ) -> None: |
| 218 | + self.enabled = False |
| 219 | + |
| 220 | + def append( |
| 221 | + self, |
| 222 | + op_type: OpType, |
| 223 | + params: list[Variable], |
| 224 | + output: Variable, |
| 225 | + other_params: dict | None = None, |
| 226 | + ) -> None: |
| 227 | + """ |
| 228 | + Adds Operation object to the related Variable objects for |
| 229 | + creating computational graph for calculating gradients. |
| 230 | +
|
| 231 | + Args: |
| 232 | + op_type: Operation type |
| 233 | + params: Input parameters to the operation |
| 234 | + output: Output variable of the operation |
| 235 | + """ |
| 236 | + operation = Operation(op_type, other_params=other_params) |
| 237 | + param_nodes = [] |
| 238 | + for param in params: |
| 239 | + param.add_param_to(operation) |
| 240 | + param_nodes.append(param) |
| 241 | + output.add_result_of(operation) |
| 242 | + |
| 243 | + operation.add_params(param_nodes) |
| 244 | + operation.add_output(output) |
| 245 | + |
| 246 | + def gradient(self, target: Variable, source: Variable) -> np.ndarray | None: |
| 247 | + """ |
| 248 | + Reverse accumulation of partial derivatives to calculate gradients |
| 249 | + of target variable with respect to source variable. |
| 250 | +
|
| 251 | + Args: |
| 252 | + target: target variable for which gradients are calculated. |
| 253 | + source: source variable with respect to which the gradients are |
| 254 | + calculated. |
| 255 | +
|
| 256 | + Returns: |
| 257 | + Gradient of the source variable with respect to the target variable |
| 258 | + """ |
| 259 | + |
| 260 | + # partial derivatives with respect to target |
| 261 | + partial_deriv = defaultdict(lambda: 0) |
| 262 | + partial_deriv[target] = np.ones_like(target.to_ndarray()) |
| 263 | + |
| 264 | + # iterating through each operations in the computation graph |
| 265 | + operation_queue = [target.result_of] |
| 266 | + while len(operation_queue) > 0: |
| 267 | + operation = operation_queue.pop() |
| 268 | + for param in operation.params: |
| 269 | + # as per the chain rule, multiplying partial derivatives |
| 270 | + # of variables with respect to the target |
| 271 | + dparam_doutput = self.derivative(param, operation) |
| 272 | + dparam_dtarget = dparam_doutput * partial_deriv[operation.output] |
| 273 | + partial_deriv[param] += dparam_dtarget |
| 274 | + |
| 275 | + if param.result_of and param.result_of != OpType.NOOP: |
| 276 | + operation_queue.append(param.result_of) |
| 277 | + |
| 278 | + return partial_deriv.get(source) |
| 279 | + |
| 280 | + def derivative(self, param: Variable, operation: Operation) -> np.ndarray: |
| 281 | + """ |
| 282 | + Compute the derivative of given operation/function |
| 283 | +
|
| 284 | + Args: |
| 285 | + param: variable to be differentiated |
| 286 | + operation: function performed on the input variable |
| 287 | +
|
| 288 | + Returns: |
| 289 | + Derivative of input variable with respect to the output of |
| 290 | + the operation |
| 291 | + """ |
| 292 | + params = operation.params |
| 293 | + |
| 294 | + if operation == OpType.ADD: |
| 295 | + return np.ones_like(params[0].to_ndarray(), dtype=np.float64) |
| 296 | + if operation == OpType.SUB: |
| 297 | + if params[0] == param: |
| 298 | + return np.ones_like(params[0].to_ndarray(), dtype=np.float64) |
| 299 | + return -np.ones_like(params[1].to_ndarray(), dtype=np.float64) |
| 300 | + if operation == OpType.MUL: |
| 301 | + return ( |
| 302 | + params[1].to_ndarray().T |
| 303 | + if params[0] == param |
| 304 | + else params[0].to_ndarray().T |
| 305 | + ) |
| 306 | + if operation == OpType.DIV: |
| 307 | + if params[0] == param: |
| 308 | + return 1 / params[1].to_ndarray() |
| 309 | + return -params[0].to_ndarray() / (params[1].to_ndarray() ** 2) |
| 310 | + if operation == OpType.MATMUL: |
| 311 | + return ( |
| 312 | + params[1].to_ndarray().T |
| 313 | + if params[0] == param |
| 314 | + else params[0].to_ndarray().T |
| 315 | + ) |
| 316 | + if operation == OpType.POWER: |
| 317 | + power = operation.other_params["power"] |
| 318 | + return power * (params[0].to_ndarray() ** (power - 1)) |
| 319 | + |
| 320 | + err_msg = f"invalid operation type: {operation.op_type}" |
| 321 | + raise ValueError(err_msg) |
| 322 | + |
| 323 | + |
| 324 | +if __name__ == "__main__": |
| 325 | + import doctest |
| 326 | + |
| 327 | + doctest.testmod() |
0 commit comments