|
| 1 | +""" |
| 2 | +LeNet Network |
| 3 | +
|
| 4 | +Paper: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf |
| 5 | +""" |
| 6 | + |
| 7 | +import numpy |
| 8 | +import torch |
| 9 | +import torch.nn as nn |
| 10 | + |
| 11 | + |
| 12 | +class LeNet(nn.Module): |
| 13 | + def __init__(self) -> None: |
| 14 | + super().__init__() |
| 15 | + |
| 16 | + self.tanh = nn.Tanh() |
| 17 | + self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2) |
| 18 | + |
| 19 | + self.conv1 = nn.Conv2d( |
| 20 | + in_channels=1, |
| 21 | + out_channels=6, |
| 22 | + kernel_size=(5, 5), |
| 23 | + stride=(1, 1), |
| 24 | + padding=(0, 0), |
| 25 | + ) |
| 26 | + self.conv2 = nn.Conv2d( |
| 27 | + in_channels=6, |
| 28 | + out_channels=16, |
| 29 | + kernel_size=(5, 5), |
| 30 | + stride=(1, 1), |
| 31 | + padding=(0, 0), |
| 32 | + ) |
| 33 | + self.conv3 = nn.Conv2d( |
| 34 | + in_channels=16, |
| 35 | + out_channels=120, |
| 36 | + kernel_size=(5, 5), |
| 37 | + stride=(1, 1), |
| 38 | + padding=(0, 0), |
| 39 | + ) |
| 40 | + |
| 41 | + self.linear1 = nn.Linear(120, 84) |
| 42 | + self.linear2 = nn.Linear(84, 10) |
| 43 | + |
| 44 | + def forward(self, image_array: numpy.ndarray) -> numpy.ndarray: |
| 45 | + image_array = self.tanh(self.conv1(image_array)) |
| 46 | + image_array = self.avgpool(image_array) |
| 47 | + image_array = self.tanh(self.conv2(image_array)) |
| 48 | + image_array = self.avgpool(image_array) |
| 49 | + image_array = self.tanh(self.conv3(image_array)) |
| 50 | + |
| 51 | + image_array = image_array.reshape(image_array.shape[0], -1) |
| 52 | + image_array = self.tanh(self.linear1(image_array)) |
| 53 | + image_array = self.linear2(image_array) |
| 54 | + return image_array |
| 55 | + |
| 56 | + |
| 57 | +def test_model(image_tensor: torch.tensor) -> bool: |
| 58 | + """ |
| 59 | + Test the model on an input batch of 64 images |
| 60 | +
|
| 61 | + Args: |
| 62 | + image_tensor (torch.tensor): Batch of Images for the model |
| 63 | +
|
| 64 | + >>> test_model(torch.randn(64, 1, 32, 32)) |
| 65 | + True |
| 66 | +
|
| 67 | + """ |
| 68 | + try: |
| 69 | + model = LeNet() |
| 70 | + output = model(image_tensor) |
| 71 | + except RuntimeError: |
| 72 | + return False |
| 73 | + |
| 74 | + return output.shape == torch.zeros([64, 10]).shape |
| 75 | + |
| 76 | + |
| 77 | +if __name__ == "__main__": |
| 78 | + random_image_1 = torch.randn(64, 1, 32, 32) |
| 79 | + random_image_2 = torch.randn(1, 32, 32) |
| 80 | + |
| 81 | + print(f"random_image_1 Model Passed: {test_model(random_image_1)}") |
| 82 | + print(f"\nrandom_image_2 Model Passed: {test_model(random_image_2)}") |
0 commit comments