We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
其一,无需对抗训练(adversarial training),就能直接生成高质量的图像样本。
其二,相比扩散模型可能需要几百甚至上千次迭代,一致性模型只需要一两步就能搞定多种图像任务——
包括上色、去噪、超分等,都可以在几步之内搞定,而不需要对这些任务进行明确训练。(当然,如果进行少样本学习的话,生成效果也会更好)
项目地址: https://github.com/openai/consistency_models
论文地址: https://arxiv.org/abs/2303.01469
参考链接: [1]https://twitter.com/alfredplpl/status/1646217811898011648 [2]https://twitter.com/_akhaliq/status/1646168119658831874
The text was updated successfully, but these errors were encountered:
生成对抗网络(GAN) 变微分自动编码器(VAE) normalizing flow models 自回归模型(AR) energy-based models 扩散模型(Diffusion Model)
GAN:额外的判别器 VAE:对准后验分布 EBM基于能量的模型:处理分区函数 归一化流:施加网络约束
Sorry, something went wrong.
No branches or pull requests
扩散模型
GAN模型
一致性模型(Consistency Model)
其一,无需对抗训练(adversarial training),就能直接生成高质量的图像样本。
其二,相比扩散模型可能需要几百甚至上千次迭代,一致性模型只需要一两步就能搞定多种图像任务——
包括上色、去噪、超分等,都可以在几步之内搞定,而不需要对这些任务进行明确训练。(当然,如果进行少样本学习的话,生成效果也会更好)
项目地址:
https://github.com/openai/consistency_models
论文地址:
https://arxiv.org/abs/2303.01469
参考链接:
[1]https://twitter.com/alfredplpl/status/1646217811898011648
[2]https://twitter.com/_akhaliq/status/1646168119658831874
The text was updated successfully, but these errors were encountered: