Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AI图像生成 #59

Open
seeu100 opened this issue Apr 22, 2024 · 1 comment
Open

AI图像生成 #59

seeu100 opened this issue Apr 22, 2024 · 1 comment
Labels
待完善 还需要花费时间去完善

Comments

@seeu100
Copy link
Owner

seeu100 commented Apr 22, 2024

扩散模型

GAN模型

一致性模型(Consistency Model)

其一,无需对抗训练(adversarial training),就能直接生成高质量的图像样本。

其二,相比扩散模型可能需要几百甚至上千次迭代,一致性模型只需要一两步就能搞定多种图像任务——

包括上色、去噪、超分等,都可以在几步之内搞定,而不需要对这些任务进行明确训练。(当然,如果进行少样本学习的话,生成效果也会更好)

项目地址:
https://github.com/openai/consistency_models

论文地址:
https://arxiv.org/abs/2303.01469

参考链接:
[1]https://twitter.com/alfredplpl/status/1646217811898011648
[2]https://twitter.com/_akhaliq/status/1646168119658831874

@seeu100
Copy link
Owner Author

seeu100 commented Apr 22, 2024

生成对抗网络(GAN)
变微分自动编码器(VAE)
normalizing flow models
自回归模型(AR)
energy-based models
扩散模型(Diffusion Model)

GAN:额外的判别器
VAE:对准后验分布
EBM基于能量的模型:处理分区函数
归一化流:施加网络约束

@seeu100 seeu100 added the 待完善 还需要花费时间去完善 label Apr 23, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
待完善 还需要花费时间去完善
Projects
None yet
Development

No branches or pull requests

1 participant