-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgru_namegen.py
259 lines (218 loc) · 8.39 KB
/
gru_namegen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# GRU
import os
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import random
stoi = {chr(ord('a') + i):i+1 for i in range(26)}
stoi['\n'] = 0
itos = {v:k for k,v in stoi.items()}
with open('../data/names.txt', 'r') as f:
data = f.readlines()
rng = torch.random.manual_seed(42)
# hyperparams
vocab_len = len(stoi)
hidden_dim = 150
context_len = 8
batch_size = 8
Wr = torch.randn((vocab_len, hidden_dim), generator=rng) * 0.01
Ur = torch.randn((hidden_dim, hidden_dim), generator=rng) * 0.01
br = torch.zeros(hidden_dim)
Wz = torch.randn((vocab_len, hidden_dim), generator=rng) * 0.01
Uz = torch.randn((hidden_dim, hidden_dim), generator=rng) * 0.01
bz = torch.zeros(hidden_dim)
Wa = torch.randn((vocab_len, hidden_dim), generator=rng) * 0.01
Ua = torch.randn((hidden_dim, hidden_dim), generator=rng) * 0.01
ba = torch.zeros(hidden_dim)
Wy = torch.randn((hidden_dim, vocab_len), generator=rng) * 0.01
params = [
Wr, Ur, br,
Wz, Uz, bz,
Wa, Ua, ba,
Wy
]
for param in params: param.requires_grad = True
def build_dataset(data):
X, Y = [], []
for w in data:
ixs = [stoi[c] for c in w[:context_len]] + [0] * (context_len - len(w))
pad = [0] * (context_len - 1)
for t in range(1, context_len):
X.append(ixs[:t] + pad)
Y.append(ixs[1:t+1] + pad)
pad = pad[:-1]
return torch.tensor(X), torch.tensor(Y)
random.seed(42)
random.shuffle(data)
n1 = int(.8*len(data))
n2 = int(.9*len(data))
Xtrain, Ytrain = build_dataset(data[:n1])
Xval, Yval = build_dataset(data[n1:n2])
Xtest, Ytest = build_dataset(data[:n2])
def forward(x, hprev):
pre_r = Wr[x] + hprev @ Ur + br
r = F.sigmoid(pre_r)
pre_z = Wz[x] + hprev @ Uz + bz
pre_a = Wa[x] + (r * hprev) @ Ua + ba
z = F.sigmoid(pre_z)
a = torch.tanh(pre_a)
h = (1 - z) * hprev + z * a
y = h @ Wy
return y, h
def sample(seed):
with torch.no_grad():
assert type(seed) == int
out = [seed]
h = torch.zeros(hidden_dim)
ix = seed
for t in range(context_len):
y, h = forward(ix, h)
ix = torch.multinomial(F.softmax(y, dim=-1), 1, generator=rng).item()
if ix == 0: break
out.append(ix)
return ''.join(itos[i] for i in out)
def evaluate(inputs, targets, hprev):
with torch.no_grad():
loss = 0
h = hprev.clone()
for t in range(context_len):
y, h = forward(inputs[:,t], hprev)
target_one_hot = F.one_hot(targets[:,t], num_classes=vocab_len).float()
loss += F.cross_entropy(y, target_one_hot)
return loss, h
def train_torch(inputs, targets, hprev, lr):
loss = 0
h = hprev.clone()
for t in range(context_len):
y, h = forward(inputs[:,t], hprev)
target_one_hot = F.one_hot(targets[:,t],num_classes=vocab_len).float()
loss += F.cross_entropy(y, target_one_hot)
for param in params: param.grad = None
loss.backward()
for param in params: param.data += -lr * param.grad
return loss.detach(), h.detach()
def train_manual(inputs, targets, hprev, lr):
with torch.no_grad():
loss = 0
pre_r, pre_z, pre_a = {},{},{}
x, r, z, a, h, y = {},{},{},{},{},{}
h[-1] = hprev.clone()
# forward pass
for t in range(context_len):
x[t] = F.one_hot(inputs[:,t],num_classes=vocab_len).float()
pre_r[t] = x[t] @ Wr + h[t-1] @ Ur + br
r[t] = F.sigmoid(pre_r[t])
pre_z[t] = x[t] @ Wz + h[t-1] @ Uz + bz
pre_a[t] = x[t] @ Wa + (r[t] * h[t-1]) @ Ua + ba
z[t] = F.sigmoid(pre_z[t])
a[t] = torch.tanh(pre_a[t])
h[t] = (1 - z[t]) * h[t-1] + z[t] * a[t]
y[t] = h[t] @ Wy
target_one_hot = F.one_hot(targets[:,t],num_classes=vocab_len).float()
loss += F.cross_entropy(y[t], target_one_hot)
def sigmoid_grad(z):
z -= z.max(-1,keepdims=True).values[0]
e_nz = torch.exp(-z)
return e_nz / (1 + e_nz)**2
def tanh_grad(x):
# NOTE this function assumes tanh'd input
return 1 - x**2
dpre_r_wrt_Wr = torch.zeros_like(Wr)
dpre_r_wrt_Ur = torch.zeros_like(Ur)
dpre_r_wrt_br = torch.zeros_like(br)
dpre_z_wrt_Wz = torch.zeros_like(Wr)
dpre_z_wrt_Uz = torch.zeros_like(Ur)
dpre_z_wrt_bz = torch.zeros_like(br)
dpre_a_wrt_Wa = torch.zeros_like(Wr)
dpre_a_wrt_Ua = torch.zeros_like(Ur)
dpre_a_wrt_ba = torch.zeros_like(br)
dy_wrt_Wy = torch.zeros_like(Wy)
dhnext = torch.zeros_like(h[0])
grads = [
dpre_r_wrt_Wr,
dpre_r_wrt_Ur,
dpre_r_wrt_br,
dpre_z_wrt_Wz,
dpre_z_wrt_Uz,
dpre_z_wrt_bz,
dpre_a_wrt_Wa,
dpre_a_wrt_Ua,
dpre_a_wrt_ba,
dy_wrt_Wy
]
# backward pass
for t in reversed(range(tmax)):
dloss_wrt_y = F.softmax(y[t], dim=-1)
dloss_wrt_y[targets[:,t]] -= 1
dy_wrt_Wy += h[t].view((-1,1)) @ dloss_wrt_y.view((1,-1))
dy_wrt_h = dloss_wrt_y @ Wy.T + dhnext
dh_wrt_a = z[t] * dy_wrt_h
dh_wrt_z = dy_wrt_h * a[t] # I think (1 - z[t]) goes to 0, so it wont influence the gradient
da_wrt_pre_a = tanh_grad(a[t]) * dh_wrt_a # tanh_grad expects tanh'd input
dz_wrt_pre_z = sigmoid_grad(pre_z[t]) * dh_wrt_z
dpre_a_wrt_ba += da_wrt_pre_a
dpre_a_wrt_Ua += (r[t] * h[t-1]).view((-1,1)) @ da_wrt_pre_a.view((1,-1))
dpre_a_wrt_Wa += x[t].view((-1,1)) @ da_wrt_pre_a.view((1,-1))
dpre_a_wrt_r = (da_wrt_pre_a * h[t-1]) @ Ua.T # ???
dpre_z_wrt_bz = dz_wrt_pre_z
dpre_z_wrt_Uz = h[t-1].view((-1,1)) @ dz_wrt_pre_z.view((1,-1))
dpre_z_wrt_Wz = x[t].view((-1,1)) @ dz_wrt_pre_z.view((1,-1))
dr_wrt_pre_r = sigmoid_grad(pre_r[t]) * dpre_a_wrt_r
dpre_r_wrt_br += dr_wrt_pre_r
dpre_r_wrt_Ur += h[t-1].view((-1,1)) @ dr_wrt_pre_r.view((1,-1))
dpre_r_wrt_Wr += x[t].view((-1,1)) @ dr_wrt_pre_r.view((1,-1))
dhnext = (1 - z[t]) * dy_wrt_h
dhnext += (r[t] * da_wrt_pre_a) @ Ua.T
dhnext += dz_wrt_pre_z @ Uz.T
dhnext += dr_wrt_pre_r @ Ur.T
for param, grad in zip(params, grads):
param.data += -lr * grad
return loss, h[tmax-1]
train_steps = 90000
evaluate_steps = 30000
test_steps = 10000
train = train_torch
if os.getenv('MANUAL'):
print('training GRU model with manual backprop\n')
train = train_manual
elif os.getenv('TORCH'):
print('training GRU model with torch backprop\n')
train = train_torch
lossi = []
epochs = 2
for ep in range(epochs):
hprev = torch.rand(hidden_dim, generator=rng)
for i in range(train_steps):
ix = torch.randint(0, len(Xtrain), (batch_size,), generator=rng)
X, Y = Xtrain[ix], Ytrain[ix]
lr = 0.1 if i < (train_steps>>1) else 0.001
loss, hprev = train(X, Y, hprev, lr)
if i % 10000 == 0: # print every once in a while
print(f'train step {i}/{train_steps}: {loss.item():.4f}')
print(f'sample: {sample(X[0][0].item())}\n')
lossi.append(torch.log10(loss))
evaluate_loss = 0
for i in range(evaluate_steps):
ix = torch.randint(0, len(Xval), (batch_size,), generator=rng)
X, Y = Xval[ix], Yval[ix]
loss, hprev = evaluate(X, Y, hprev)
if i % 1000 == 0:
print(f'evaluate step {i}/{evaluate_steps}: {loss.item():.4f}')
evaluate_loss += loss
avg_evaluate_loss = evaluate_loss/evaluate_steps
print(f'average validation loss: {avg_evaluate_loss.item():.4f}')
if avg_evaluate_loss <= 3.0:
break
plt.plot(lossi)
plt.savefig('loss.png')
test_loss = 0
hprev = torch.rand(hidden_dim, generator=rng)
for i in range(test_steps):
ix = torch.randint(0, len(Xtest), (batch_size,), generator=rng)
X, Y = Xtest[ix], Ytest[ix]
loss, hprev = evaluate(X, Y, hprev)
test_loss += loss
print(f'average test loss: {test_loss.item()/test_steps:.4f}')
for _ in range(30):
seed = torch.randint(1, vocab_len, (1,), generator=rng).item()
print(sample(seed))