Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Intel MKL FATAL ERROR: Cannot load libmkl_avx2.so or libmkl_def.so. #5

Closed
jhyuklee opened this issue Aug 12, 2019 · 1 comment
Closed

Comments

@jhyuklee
Copy link
Collaborator

After all the installations (faiss, drqa, and the two requirements.txt from this repo), run_index_pred_eval.py gives an error like below:

$ python open/run_index_pred_eval.py
/home/jinhyuk/github/kernel-sparse/dense
/data_nfs/camist002/data/dev-3.json
--para
--no_od
sampling from:
/home/jinhyuk/github/kernel-sparse/dense/phrase.hdf5
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 36.63it/s]
WARNING clustering 788 points to 256 centroids: please provide at least 9984 training points████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 9/9 [00:00<00:00, 341.87it/s]
Clustering 788 points in 481D to 256 clusters, redo 1 times, 10 iterations
Preprocessing in 0.00 s
INTEL MKL ERROR: /home/jinhyuk/miniconda3/envs/kesper/lib/python3.6/site-packages/faiss/../../../libmkl_avx2.so: undefined symbol: mkl_sparse_optimize_bsr_trsm_i8.
Intel MKL FATAL ERROR: Cannot load libmkl_avx2.so or libmkl_def.so.

Following the recommendation from here, the conda install nomkl numpy scipy scikit-learn numexpr command shows that there are some conflicts between the versions.

$ conda install nomkl numpy scipy scikit-learn numexpr
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: \
Found conflicts! Looking for incompatible packages.
This can take several minutes. Press CTRL-C to abort.
failed
UnsatisfiableError: The following specifications were found to be incompatible with each other:
Package libopenblas conflicts for:
scikit-learn -> numpy[version='>=1.11.3,<2.0a0'] -> libopenblas[version='>=0.3.2,<0.3.3.0a0']
Package blas conflicts for:
mkl_fft -> numpy-base[version='>=1.0.6,<2.0a0'] -> blas[version='|1.0',build=openblas]
blas
scikit-learn -> blas[version='
||1.0',build='mkl|openblas|mkl|openblas']
nomkl -> blas=[build=openblas]
mkl_fft -> blas[version='
|1.0',build=mkl]
numexpr -> blas[version='||1.0',build='mkl|openblas|mkl|openblas']
numpy -> blas[version='||1.0',build='mkl|openblas|mkl|openblas']
mkl_random -> blas[version='|1.0',build=mkl]
faiss-cpu=1.5.2 -> numpy[version='>=1.11'] -> numpy-base==1.16.0=py36hde5b4d6_1 -> blas[version='
|1.0',build=openblas]
scipy -> blas[version='||1.0',build='mkl|openblas|mkl|openblas']
mkl_random -> numpy-base[version='>=1.0.2,<2.0a0'] -> blas[version='|1.0',build=openblas]
numpy-base -> blas[version='
|*|1.0',build='mkl|openblas|mkl|openblas']
faiss-cpu=1.5.2 -> blas=[build=mkl]
faiss-cpu=1.5.2 -> numpy[version='>=1.11'] -> blas==1.0=mkl

Any idea how to resolve this?

@jhyuklee
Copy link
Collaborator Author

jhyuklee commented Aug 12, 2019

Seems like Anaconda related issue (see here).
This solved the issue.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant