-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
86 lines (71 loc) · 2.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import argparse
import math
import numpy as np
import torch
import torch.nn as nn
from pytorch_lightning.core.lightning import LightningModule
from torch import optim
from transformers import BertForSequenceClassification
class BertCategorizerModel(LightningModule):
def __init__(
self,
num_classes,
use_soft_labels=False,
language="en",
class_weights=None,
warmup_steps=0,
training_steps=0,
learning_rate=1e-4,
):
super().__init__()
self.use_soft_labels = use_soft_labels
self.language = language
self.num_classes = num_classes
self.class_weights = class_weights
self.warmup_steps = warmup_steps
self.training_steps = training_steps
self.learning_rate = learning_rate
model_name = "kobart" if language == "kr" else "bert-base-uncased"
self.model = BertForSequenceClassification.from_pretrained(
model_name, num_labels=num_classes
)
self.pad_token_id = self.model.config.pad_token_id
self.ce_loss = nn.CrossEntropyLoss()
for param in self.model.bert.embeddings.parameters():
param.requires_grad = False
def forward(self, input_ids, input_mask):
x = self.model(input_ids=input_ids, attention_mask=input_mask)
return x
def run_batch(self, batch, batch_idx, predicting=False):
label, confidence, input_ids, input_mask = batch
target = confidence if self.use_soft_labels else label
out = self(input_ids, input_mask).logits
if not predicting:
loss = self.ce_loss(out.view(-1, self.num_classes), target)
else:
loss = None
return loss, out
def training_step(self, batch, batch_idx):
loss, _ = self.run_batch(batch, batch_idx)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
loss, _ = self.run_batch(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, out = self.run_batch(batch, batch_idx)
self.log("test_loss", loss)
return loss, indices, preds
def predict_step(self, batch, batch_idx):
_, out = self.run_batch(batch, batch_idx, predicting=True)
indices = batch[0]
preds = out.argmax(dim=-1)
return indices, preds
def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(), lr=self.learning_rate)
return optimizer
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--argument", help="Example argument")
args = parser.parse_args()