-
Notifications
You must be signed in to change notification settings - Fork 2
/
23tree.scm
267 lines (255 loc) · 9.03 KB
/
23tree.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
;; this module contains an implementation of a-b-trees
(use-modules (ice-9 match)) ;; for the use of match
(use-modules (srfi srfi-1)) ;; to import fold
(define empty-tree (list 'leaf))
(define (lookup comp elem tree)
(match tree
(('leaf)
#f)
(('leaf1 a)
(if (= 0 (comp elem a))
a
#f))
(('leaf2 a b)
(cond ((= 0 (comp elem a))
a)
((= 0 (comp elem b))
b)
(else #f)))
(('branch1 left a right)
(let ((a-comp (comp elem a)))
(match a-comp
(1
(lookup comp elem right))
(-1
(lookup comp elem left))
(0
a))))
(('branch2 left a mid b right)
(let ((a-comp (comp elem a))
(b-comp (comp elem b)))
(cond ((= -1 a-comp)
(lookup comp elem left))
((= 1 b-comp)
(lookup comp elem right))
((= 0 a-comp)
a)
((= 0 b-comp)
b)
(else (lookup comp elem mid)))))))
(define (insert comp elem t)
(define (down-phase t zipper)
;; We have to traverse down the tree to the leaf node where the
;; element should be added
(match t
;; check the structure of the node we want to change. we don't
;; have to care about the case where we hit a "leaf" because
;; insert itself takes already care of this case
(('leaf1 x)
(let ((comp-val (comp elem x)))
(cond ((= 0 comp-val)
(zip-up (list 'leaf1 elem) zipper))
((= 1 comp-val)
(zip-up (list 'leaf2 x elem) zipper))
((= -1 comp-val)
(zip-up (list 'leaf2 elem x) zipper)))))
(('leaf2 x y)
(let ((comp-with-x (comp elem x))
(comp-with-y (comp elem y)))
(cond ((= -1 comp-with-x)
(up-phase (list 'leaf1 elem)
x
(list 'leaf1 y)
zipper))
((= 1 comp-with-y)
(up-phase (list 'leaf1 x)
y
(list 'leaf1 elem)
zipper))
((= 0 comp-with-x)
(zip-up (list 'leaf2 elem y)
zipper))
((= 0 comp-with-y)
(zip-up (list 'leaf2 x elem)
zipper))
(else
(up-phase (list 'leaf1 x)
elem
(list 'leaf1 y)
zipper)))))
(('branch1 left x right)
(let ((comp-val (comp elem x)))
(cond ((= 0 comp-val)
(zip-up (list 'branch1 left elem right)
zipper))
((= 1 comp-val)
(down-phase right
(cons (list 'zip-1-right left x)
zipper)))
(else
(down-phase left
(cons (list 'zip-1-left x right)
zipper))))))
(('branch2 left x mid y right)
(let ((comp-with-x (comp elem x))
(comp-with-y (comp elem y)))
(cond ((= 0 comp-with-x)
(zip-up (list 'branch2
left elem mid y right)
zipper))
((= 0 comp-with-y)
(zip-up (list 'branch2
left x mid elem right)
zipper))
((= -1 comp-with-x)
(down-phase left
(cons (list 'zip-2-left
x mid y right)
zipper)))
((= 1 comp-with-y)
(down-phase right
(cons (list 'zip-2-right
left x mid y)
zipper)))
(else
(down-phase mid
(cons (list 'zip-2-mid
left x y right)
zipper))))))))
(define (up-phase left x right zipper)
;; this function gets called when we already inserted the element
;; to the right place, but still need to rearrange the tree.
(match zipper
;; check if we are already at the top
(()
;; we are at the top
(list 'branch1 left x right))
((zip zipper ...)
;; we are not at the top
(match zip
;; check the kind of zip that is next
(('zip-1-left y rightest)
(zip-up (list 'branch2 left x right y rightest) zipper))
(('zip-1-right leftest w)
(zip-up (list 'branch2 leftest w left x right) zipper))
(('zip-2-left y left2 z right2)
(up-phase (list 'branch1
left x right)
y
(list 'branch1
left2 z right2)
zipper))
(('zip-2-mid leftest w y rightest)
(up-phase (list 'branch1
leftest w left)
x
(list 'branch1
right y rightest)
zipper))
(('zip-2-right left1 v right2 w)
(up-phase (list 'branch1
left1 v right2)
w
(list 'branch1
left x right)
zipper))))))
(define (zip-up tree zipper)
;; This function gets called when we found the right place for the
;; element to insert and just have to zip up the rest of the tree.
(match zipper
(()
;; we are already at the top
tree)
((zip zipper ...)
(match zip
;; check the kind of zip we have
(('zip-1-left x right)
(zip-up (list 'branch1 tree x right) zipper))
(('zip-1-right left x)
(zip-up (list 'branch1 left x tree) zipper))
(('zip-2-left x mid y right)
(zip-up (list 'branch2 tree x mid y right) zipper))
(('zip-2-mid left x y right)
(zip-up (list 'branch2 left x tree right) zipper))
(('zip-2-right left x mid y)
(zip-up (list 'branch2 left x mid y tree) zipper))))))
;; we have to check if we have an empty tree.
(match t
(('leaf)
(list 'leaf1 elem))
(node
(down-phase t '()))))
(define (int-comp x y)
(cond ((< x y) -1)
((> x y) 1)
(else 0)))
(define (fold-with-depth* depth fun start tree)
;; foldl over a tree applying the following function
;; (fun current-depth current-val previous),
;; producing the "previous" argument for the call of fun on the next
;; element in the tree
(match tree
(('leaf)
start)
(('leaf1 x)
(fun depth x start))
(('leaf2 x y)
(fun depth y (fun depth x start)))
(('branch1 left x right)
(let* ((previous-x (fold-with-depth* (1+ depth)
fun
start
left))
(start-right (fun depth x previous-x))
(result (fold-with-depth* (1+ depth)
fun
start-right
right)))
result))
(('branch2 left x mid y right)
(let* ((previous-x (fold-with-depth* (1+ depth)
fun
start
left))
(start-mid (fun depth x previous-x))
(previous-y (fold-with-depth* (1+ depth)
fun
start-mid
mid))
(start-right (fun depth y previous-y))
(result (fold-with-depth* (1+ depth)
fun
start-right
right)))
result))))
(define (fold-with-depth fun start tree)
(fold-with-depth* 1 fun start tree))
(define (pretty-show tree show)
(fold-with-depth (lambda (depth val accu)
(string-append accu
"\n"
(indent depth (show val))))
""
tree))
(define (indent n str)
(string-append (fold string-append "" (make-list n " "))
str))
(define (display-ind n obj)
(if (<= n 0)
(begin (display obj)
(newline))
(begin (display " ")
(display-ind (1- n) obj))))
(define (pp t)
(fold-with-depth (lambda (d x prev) (begin (display-ind (* 2 d) x) prev))
#nil
t))
(define (run-on-list list)
(fold (lambda (n t)
(let ((newt (insert int-comp n t)))
(begin (pp newt)
(display "----")
(newline)
(insert int-comp n newt))))
empty-tree
list))