-
Notifications
You must be signed in to change notification settings - Fork 3
/
SWculling_Ref.c
1071 lines (895 loc) · 37.1 KB
/
SWculling_Ref.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "SWculling.h"
#include <float.h>
#include "SWrasterize.h"
#define SW_CULL_TILE_HEIGHT_SHIFT 0
#define SW_CULL_TILE_SIZE_Y (1 << SW_CULL_TILE_HEIGHT_SHIFT)
#define SW_CULL_SUBTILE_Y 1
#define FP_BITS 16
typedef struct SWztile {
float zmin[2][4];
uint32_t mask;
} SWztile;
void _swComputeDepthPlane(const SWfloat v0[3], const SWfloat v1[3], const SWfloat v2[3],
SWfloat *z_px_dx, SWfloat *z_px_dy) {
// depth plane z(x,y) = z0 + dx * x + dy * y
const SWfloat x10 = v1[0] - v0[0];
const SWfloat x20 = v2[0] - v0[0];
const SWfloat y10 = v1[1] - v0[1];
const SWfloat y20 = v2[1] - v0[1];
const SWfloat z10 = v1[2] - v0[2];
const SWfloat z20 = v2[2] - v0[2];
const SWfloat d = ((SWfloat)1) / (x10 * y20 - y10 * x20);
(*z_px_dx) = (z10 * y20 - y10 * z20) * d;
(*z_px_dy) = (x10 * z20 - z10 * x20) * d;
}
void _swUpdateTileQuick(SWztile *tile, const uint32_t coverage_mask,
const SWfloat z_subtile_min[4]) {
uint32_t mask = tile->mask;
SWfloat *zmin0 = tile->zmin[0];
SWfloat *zmin1 = tile->zmin[1];
uint32_t rast_mask = coverage_mask;
uint32_t dead_lane = 0;
for (SWint j = 0; j < 4; j++) {
if ((rast_mask & (0xff << (j * 8))) == 0 || z_subtile_min[j] < zmin0[j]) {
dead_lane |= (0xff << j * 8);
}
}
// don't update subtiles that fail depth test
rast_mask = ~dead_lane & rast_mask;
// discard layer 1 if triangle is significantly closer to observer
uint32_t covered_lane = 0;
for (SWint j = 0; j < 4; j++) {
if (((rast_mask >> j * 8) & 0xff) == 0xff) {
covered_lane |= (0xff << j * 8);
}
}
uint32_t diff_neg = 0;
for (SWint j = 0; j < 4; j++) {
SWfloat diff = 2 * zmin1[j] - (z_subtile_min[j] + zmin0[j]);
if (diff < 0) {
diff_neg |= (0xff << j * 8);
}
}
uint32_t discard_layer_mask = ~dead_lane & (diff_neg | covered_lane);
// update mask
mask = (~discard_layer_mask & mask) | rast_mask;
// compute new value of zmin1, there are 4 cases:
// zmin1 = min(zmin1, z_subtile_min) -> layer is updated
// zmin1 = z_subtile_min -> layer is discarded
// zmin1 = FLT_MAX -> layer is fully covered
// zmin1 unchanged -> layer is not updated
for (SWint j = 0; j < 4; j++) {
SWfloat op_a = (dead_lane & (0xff << j * 8)) ? zmin1[j] : z_subtile_min[j];
SWfloat op_b =
(discard_layer_mask & (0xff << j * 8)) ? z_subtile_min[j] : zmin1[j];
SWfloat z1min = sw_min(op_a, op_b);
SWint mask_full = ((mask >> (j * 8)) & 0xff) == 0xff;
zmin1[j] = mask_full ? FLT_MAX : z1min;
zmin0[j] = mask_full ? z1min : zmin0[j];
tile->mask &= ~(0xff << (j * 8));
if (!mask_full) {
tile->mask |= (mask & 0xff << (j * 8));
}
}
}
void _swUpdateTileAccurate(SWztile *tile, const uint32_t coverage_mask,
const SWfloat z_subtile_min[4]) {
uint32_t mask = tile->mask;
SWfloat *zmin0 = tile->zmin[0];
SWfloat *zmin1 = tile->zmin[1];
uint32_t rast_mask = coverage_mask;
// perform depth tests with layer 0 and 1
SWfloat sdist0[4], sdist1[4];
uint32_t sign0 = 0, sign1 = 0;
for (SWint j = 0; j < 4; j++) {
sdist0[j] = zmin0[j] - z_subtile_min[j];
sdist1[j] = zmin1[j] - z_subtile_min[j];
if (sdist0[j] < 0) {
sign0 |= (0xff << j * 8);
}
if (sdist1[j] < 0) {
sign1 |= (0xff << j * 8);
}
}
uint32_t tri_mask = rast_mask & ((~mask & sign0) | (mask & sign1));
if (!tri_mask) {
// early out
return;
}
uint32_t t0 = 0;
SWfloat z_tri[4];
for (SWint j = 0; j < 4; j++) {
if ((tri_mask & (0xff << (j * 8))) == 0) {
t0 |= (0xff << j * 8);
z_tri[j] = zmin0[j];
} else {
z_tri[j] = z_subtile_min[j];
}
}
// test if incoming triangle overwrites layer 0 or 1 completely
uint32_t layer0_mask = (~tri_mask & ~mask);
uint32_t layer1_mask = (~tri_mask & mask);
uint32_t lm0 = 0, lm1 = 0;
SWfloat z0[4], z1[4];
for (SWint j = 0; j < 4; j++) {
if ((layer0_mask & (0xff << j * 8)) == 0) {
lm0 |= (0xff << j * 8);
z0[j] = z_tri[j];
} else {
z0[j] = zmin0[j];
}
if ((layer1_mask & (0xff << j * 8)) == 0) {
lm1 |= (0xff << j * 8);
z1[j] = z_tri[j];
} else {
z1[j] = zmin1[j];
}
}
// distances used for merging heuristic
SWfloat d0[4], d1[4], d2[4];
for (SWint j = 0; j < 4; j++) {
d0[j] = sw_abs(sdist0[j]);
d1[j] = sw_abs(sdist1[j]);
d2[j] = sw_abs(z0[j] - z1[j]);
}
// find min dist
SWint c01[4], c02[4], c12[4];
SWint d0min[4], d1min[4];
for (SWint j = 0; j < 4; j++) {
c01[j] = (SWint)(d0[j] - d1[j]);
c02[j] = (SWint)(d0[j] - d2[j]);
c12[j] = (SWint)(d1[j] - d2[j]);
if ((c01[j] < 0 && c02[j] < 0) || (lm0 & (0xff << j * 8)) ||
((tri_mask & (0xff << j * 8)) == 0)) {
d0min[j] = -1;
} else {
d0min[j] = 1;
}
if ((d0min[j] >= 0) && (c12[j] < 0 || (lm1 & (0xff << j * 8)))) {
d1min[j] = -1;
} else {
d1min[j] = 1;
}
}
// update mask based on which layer the triangle overwrites or was merged into
uint32_t inner = 0;
for (SWint j = 0; j < 4; j++) {
if (d0min[j] < 0) {
inner |= (layer1_mask & (0xff << j * 8));
} else {
inner |= (tri_mask & (0xff << j * 8));
}
}
tile->mask = 0;
for (SWint j = 0; j < 4; j++) {
if (d1min[j] < 0) {
tile->mask |= (layer0_mask & (0xff << j * 8));
} else {
tile->mask |= (inner & (0xff << j * 8));
}
}
for (SWint j = 0; j < 4; j++) {
SWfloat e0 = (d1min[j] < 0) ? z1[j] : z0[j];
SWfloat e1 = (d1min[j] < 0 || d0min[j] < 0) ? z_tri[j] : z1[j];
zmin0[j] = sw_min(e0, e1);
SWfloat z1t = (d0min[j] < 0) ? z1[j] : z_tri[j];
zmin1[j] = (d1min[j] < 0) ? z0[j] : z1t;
}
}
SWint _swProcessScanline_Ref(SWztile ztiles[], const SWint left_offset,
const SWint right_offset, const SWint left_event,
const SWint left_count, const SWint right_event,
const SWint right_count, const SWint events[3],
SWint tile_ndx, const SWfloat zmin_tri,
const SWfloat zmax_tri, const SWfloat _z0[4],
const SWfloat z_dx, SWint is_occluder) {
SWint event_offset = (left_offset << SW_CULL_TILE_WIDTH_SHIFT);
SWint left[2], right[2];
for (SWint i = 0; i < left_count; i++) {
left[i] = sw_max((events[left_event - i] >> FP_BITS) - event_offset, 0);
}
for (SWint i = 0; i < right_count; i++) {
right[i] = sw_max((events[right_event + i] >> FP_BITS) - event_offset, 0);
}
SWfloat z0[4];
for (SWint j = 0; j < 4; j++) {
z0[j] = _z0[j] + z_dx * left_offset;
}
SWint tile_ndx_end = tile_ndx + right_offset;
tile_ndx += left_offset;
while (1) {
#ifdef SW_CULL_QUICK_MASK
const SWfloat *zmin0_buf = ztiles[tile_ndx].zmin[0];
#else
uint32_t mask = ztiles[tile_ndx].mask;
SWfloat zmin0_buf[4];
for (SWint j = 0; j < 4; j++) {
SWfloat zmin0 = ztiles[tile_ndx].zmin[0][j];
if (((mask >> (j * 8)) & 0xff) == 0xff) {
zmin0 = ztiles[tile_ndx].zmin[1][j];
}
SWfloat zmin1 = ztiles[tile_ndx].zmin[1][j];
if (((mask >> (j * 8)) & 0xff) == 0) {
zmin1 = ztiles[tile_ndx].zmin[0][j];
}
zmin0_buf[j] = sw_min(zmin0, zmin1);
}
#endif
SWint all_dist_neg = 1;
for (SWint j = 0; j < 4; j++) {
SWfloat dist = zmax_tri - zmin0_buf[j];
all_dist_neg &= (dist < 0);
}
if (!all_dist_neg) {
uint32_t coverage_mask = (0xffffffffULL << sw_min(left[0], 32));
for (SWint i = 1; i < left_count; i++) {
coverage_mask &= (0xffffffffULL << sw_min(left[i], 32));
}
for (SWint i = 0; i < right_count; i++) {
coverage_mask &= ~(0xffffffffULL << sw_min(right[i], 32));
}
if (is_occluder) {
// compute interpolated min for each subtile and update tile
SWfloat z_subtile_min[4];
for (SWint j = 0; j < 4; j++) {
z_subtile_min[j] = sw_max(z0[j], zmin_tri);
}
#ifdef SW_CULL_QUICK_MASK
_swUpdateTileQuick(&ztiles[tile_ndx], coverage_mask, z_subtile_min);
#else
_swUpdateTileAccurate(&ztiles[tile_ndx], coverage_mask, z_subtile_min);
#endif
} else { // occludee case
// conservative visibility test
SWfloat subtile_zmax[4];
SWuint zpass = 0;
for (SWint j = 0; j < 4; j++) {
subtile_zmax[j] = sw_min(z0[j], zmax_tri);
if (subtile_zmax[j] >= zmin0_buf[j]) {
zpass |= (0xff << (j * 8));
}
}
uint32_t rast_mask = coverage_mask;
uint8_t dead_lane[4];
for (SWint j = 0; j < 4; j++) {
dead_lane[j] = (rast_mask & (0xff << (j * 8))) == 0;
if (dead_lane[j]) {
zpass &= ~(0xff << (j * 8));
}
}
if (zpass) {
return 1;
}
}
}
if (++tile_ndx >= tile_ndx_end) {
break;
}
for (SWint j = 0; j < 4; j++) {
z0[j] += z_dx;
}
for (SWint i = 0; i < left_count; i++) {
left[i] = sw_max(left[i] - SW_CULL_TILE_SIZE_X, 0);
}
for (SWint i = 0; i < right_count; i++) {
right[i] = sw_max(right[i] - SW_CULL_TILE_SIZE_X, 0);
}
}
return is_occluder;
}
SWint _swRasterizeTriangle_Ref(SWcull_ctx *ctx, SWint tile_row_ndx,
const SWint tile_mid_row_ndx, const SWint tile_end_row_ndx,
const SWint bb_width, SWint slope_tile_delta[3],
SWint event_start[3], const SWfloat zmin,
const SWfloat zmax, SWfloat z0[4], const SWfloat z_dx,
const SWfloat z_dy, const SWint mid_vtx_right,
const SWint use_tight_traversal, const SWint flat_bottom,
const SWint is_occluder) {
SWztile *ztiles = (SWztile *)ctx->ztiles;
const SWint tile_count = ctx->tile_w * ctx->tile_h;
#define LEFT_EDGE_BIAS 0
#define RIGHT_EDGE_BIAS 0
#define UPDATE_TILE_EVENTS_Y(i) tri_event[i] += tri_slope_tile_delta[i];
SWint tri_slope_tile_delta[3];
tri_slope_tile_delta[0] = slope_tile_delta[0];
tri_slope_tile_delta[1] = slope_tile_delta[1];
tri_slope_tile_delta[2] = slope_tile_delta[2];
SWint tri_event[3];
tri_event[0] = event_start[0];
tri_event[1] = event_start[1];
tri_event[2] = event_start[2];
SWint start_delta = 0, end_delta = 0, top_delta = 0, start_event = 0, end_event = 0, top_event = 0;
if (use_tight_traversal) {
start_delta = slope_tile_delta[2] + LEFT_EDGE_BIAS;
end_delta = slope_tile_delta[0] + RIGHT_EDGE_BIAS;
top_delta =
slope_tile_delta[1] + (mid_vtx_right ? RIGHT_EDGE_BIAS : LEFT_EDGE_BIAS);
start_event = event_start[2] + sw_min(0, start_delta);
end_event =
event_start[0] + sw_max(0, end_delta) + (SW_CULL_TILE_SIZE_X << FP_BITS);
if (mid_vtx_right) {
top_event =
event_start[1] + sw_max(0, top_delta) + (SW_CULL_TILE_SIZE_X << FP_BITS);
} else {
top_event = event_start[1] + sw_min(0, top_delta);
}
}
if (!flat_bottom) {
SWint tile_stop_ndx = sw_min(tile_end_row_ndx, tile_mid_row_ndx);
// bottom half of triangle
while (tile_row_ndx < tile_stop_ndx) {
SWint start = 0, end = bb_width;
if (use_tight_traversal) {
start = sw_max(
0, sw_min(bb_width - 1,
start_event >> (SW_CULL_TILE_WIDTH_SHIFT + FP_BITS)));
end =
sw_min(bb_width, (end_event >> (SW_CULL_TILE_WIDTH_SHIFT + FP_BITS)));
start_event += start_delta;
end_event += end_delta;
}
assert(tile_row_ndx + start <= tile_count &&
tile_row_ndx + end <= tile_count);
const SWint res = _swProcessScanline_Ref(
ztiles, start, end, 2 /* left_event */, 1, 0 /* right_event*/, 1,
tri_event, tile_row_ndx, zmin, zmax, z0, z_dx, is_occluder);
if (res && !is_occluder) {
return 1;
}
tile_row_ndx += ctx->tile_w;
for (SWint j = 0; j < 4; j++) {
z0[j] += z_dy;
}
UPDATE_TILE_EVENTS_Y(0)
UPDATE_TILE_EVENTS_Y(2)
}
// middle part (toched by all three edges)
if (tile_row_ndx < tile_end_row_ndx) {
SWint start = 0, end = bb_width;
if (use_tight_traversal) {
start = sw_max(
0, sw_min(bb_width - 1,
start_event >> (SW_CULL_TILE_WIDTH_SHIFT + FP_BITS)));
end =
sw_min(bb_width, (end_event >> (SW_CULL_TILE_WIDTH_SHIFT + FP_BITS)));
end_event = mid_vtx_right ? top_event : end_event;
end_delta = mid_vtx_right ? top_delta : end_delta;
start_event = mid_vtx_right ? start_event : top_event;
start_delta = mid_vtx_right ? start_delta : top_delta;
start_event += start_delta;
end_event += end_delta;
}
assert(tile_row_ndx + start <= tile_count &&
tile_row_ndx + end <= tile_count);
SWint res;
if (mid_vtx_right) {
res = _swProcessScanline_Ref(
ztiles, start, end, 2 /* left_event */, 1, 0 /* right_event*/, 2,
tri_event, tile_row_ndx, zmin, zmax, z0, z_dx, is_occluder);
} else {
res = _swProcessScanline_Ref(
ztiles, start, end, 2 /* left_event */, 2, 0 /* right_event*/, 1,
tri_event, tile_row_ndx, zmin, zmax, z0, z_dx, is_occluder);
}
if (res && !is_occluder) {
return 1;
}
tile_row_ndx += ctx->tile_w;
}
// top half of triangle
if (tile_row_ndx < tile_end_row_ndx) {
for (SWint j = 0; j < 4; j++) {
z0[j] += z_dy;
}
SWint i0 = mid_vtx_right + 0;
SWint i1 = mid_vtx_right + 1;
UPDATE_TILE_EVENTS_Y(i0);
UPDATE_TILE_EVENTS_Y(i1);
while (1) {
SWint start = 0, end = bb_width;
if (use_tight_traversal) {
start = sw_max(
0, sw_min(bb_width - 1,
start_event >> (SW_CULL_TILE_WIDTH_SHIFT + FP_BITS)));
end = sw_min(bb_width,
(end_event >> (SW_CULL_TILE_WIDTH_SHIFT + FP_BITS)));
start_event += start_delta;
end_event += end_delta;
}
assert(tile_row_ndx + start <= tile_count &&
tile_row_ndx + end <= tile_count);
const SWint res = _swProcessScanline_Ref(
ztiles, start, end, mid_vtx_right + 1 /* left_event */, 1,
mid_vtx_right + 0 /* right_event*/, 1, tri_event, tile_row_ndx, zmin,
zmax, z0, z_dx, is_occluder);
if (res && !is_occluder) {
return 1;
}
tile_row_ndx += ctx->tile_w;
if (tile_row_ndx >= tile_end_row_ndx) {
break;
}
for (SWint j = 0; j < 4; j++) {
z0[j] += z_dy;
}
UPDATE_TILE_EVENTS_Y(i0);
UPDATE_TILE_EVENTS_Y(i1);
}
}
} else {
if (use_tight_traversal) {
end_event = mid_vtx_right ? top_event : end_event;
end_delta = mid_vtx_right ? top_delta : end_delta;
start_event = mid_vtx_right ? start_event : top_event;
start_delta = mid_vtx_right ? start_delta : top_delta;
}
// top half of triangle
if (tile_row_ndx < tile_end_row_ndx) {
SWint i0 = mid_vtx_right + 0;
SWint i1 = mid_vtx_right + 1;
while (1) {
SWint start = 0, end = bb_width;
if (use_tight_traversal) {
start = sw_max(
0, sw_min(bb_width - 1,
start_event >> (SW_CULL_TILE_WIDTH_SHIFT + FP_BITS)));
end = sw_min(bb_width,
(end_event >> (SW_CULL_TILE_WIDTH_SHIFT + FP_BITS)));
start_event += start_delta;
end_event += end_delta;
}
assert(tile_row_ndx + start <= tile_count &&
tile_row_ndx + end <= tile_count);
const SWint res = _swProcessScanline_Ref(
ztiles, start, end, mid_vtx_right + 1 /* left_event */, 1,
mid_vtx_right + 0 /* right_event*/, 1, tri_event, tile_row_ndx, zmin,
zmax, z0, z_dx, is_occluder);
if (res && !is_occluder) {
return 1;
}
tile_row_ndx += ctx->tile_w;
if (tile_row_ndx >= tile_end_row_ndx) {
break;
}
for (SWint j = 0; j < 4; j++) {
z0[j] += z_dy;
}
UPDATE_TILE_EVENTS_Y(i0);
UPDATE_TILE_EVENTS_Y(i1);
}
}
}
(void)tile_count;
return is_occluder;
#undef LEFT_EDGE_BIAS
#undef RIGHT_EDGE_BIAS
#undef UPDATE_TILE_EVENTS_Y
}
SWint _swProcessTriangle_Ref(SWcull_ctx *ctx, SWfloat v0[3], SWfloat v1[3], SWfloat v2[3],
SWint is_occluder) {
//const SWint tile_count = ctx->tile_w * ctx->tile_h;
SWint bb_min[2], bb_max[2];
// find triangle bounds
bb_min[0] = (SWint)sw_min(v0[0], sw_min(v1[0], v2[0]));
bb_min[1] = (SWint)sw_min(v0[1], sw_min(v1[1], v2[1]));
bb_max[0] = (SWint)sw_max(v0[0], sw_max(v1[0], v2[0]));
bb_max[1] = (SWint)sw_max(v0[1], sw_max(v1[1], v2[1]));
// snap to tiles (min % TILE_SIZE_, (max + TILE_SIZE_ - 1) % TILE_SIZE_)
bb_min[0] &= ~(SW_CULL_TILE_SIZE_X - 1);
bb_min[1] &= ~(SW_CULL_TILE_SIZE_Y - 1);
bb_max[0] += SW_CULL_TILE_SIZE_X - 1;
bb_max[1] += SW_CULL_TILE_SIZE_Y - 1;
bb_max[0] &= ~(SW_CULL_TILE_SIZE_X - 1);
bb_max[1] &= ~(SW_CULL_TILE_SIZE_Y - 1);
// clamp to frame bounds
bb_min[0] = sw_max(bb_min[0], 0);
bb_min[1] = sw_max(bb_min[1], 0);
bb_max[0] = sw_min(bb_max[0], ctx->tile_w * SW_CULL_TILE_SIZE_X);
bb_max[1] = sw_min(bb_max[1], ctx->tile_h * SW_CULL_TILE_SIZE_Y);
if (bb_min[0] == bb_max[0] || bb_min[1] == bb_max[1]) {
return 0;
}
SWfloat z_px_dx, z_px_dy;
_swComputeDepthPlane(v0, v1, v2, &z_px_dx, &z_px_dy);
// compute z value at bounding box corner
const SWfloat bb_min_v0[2] = {((SWfloat)bb_min[0]) - v0[0],
((SWfloat)bb_min[1]) - v0[1]};
SWfloat z_plane_offset = z_px_dx * bb_min_v0[0] + z_px_dy * bb_min_v0[1] + v0[2];
const SWfloat z_tile_dx = z_px_dx * ((SWfloat)SW_CULL_TILE_SIZE_X);
const SWfloat z_tile_dy = z_px_dy * ((SWfloat)SW_CULL_TILE_SIZE_Y);
if (is_occluder) {
z_plane_offset += sw_min(z_px_dx * SW_CULL_SUBTILE_X, 0);
z_plane_offset += sw_min(z_px_dy * SW_CULL_SUBTILE_Y, 0);
} else {
z_plane_offset += sw_max(z_px_dx * SW_CULL_SUBTILE_X, 0);
z_plane_offset += sw_max(z_px_dy * SW_CULL_SUBTILE_Y, 0);
}
const SWfloat zmin = sw_min(v0[2], sw_min(v1[2], v2[2]));
const SWfloat zmax = sw_max(v0[2], sw_max(v1[2], v2[2]));
// Rotate vertices in winding order until p0 ends up at the bottom
for (SWint i = 0; i < 2; i++) {
SWfloat ey1 = v1[1] - v0[1];
SWfloat ey2 = v2[1] - v0[1];
if (ey1 < 0 || ey2 <= 0) {
sw_rotate_leftf(v0[0], v1[0], v2[0]);
sw_rotate_leftf(v0[1], v1[1], v2[1]);
}
}
SWfloat edges[3][2];
edges[0][0] = v1[0] - v0[0];
edges[0][1] = v1[1] - v0[1];
edges[1][0] = v2[0] - v1[0];
edges[1][1] = v2[1] - v1[1];
edges[2][0] = v2[0] - v0[0];
edges[2][1] = v2[1] - v0[1];
SWint mid_vtx_right = edges[1][1] >= 0 ? -1 : 0;
SWfloat mid_pixel[2];
if (edges[1][1] < 0) {
mid_pixel[0] = v2[0];
mid_pixel[1] = v2[1];
} else {
mid_pixel[0] = v1[0];
mid_pixel[1] = v1[1];
}
SWint bb_tile_min[2] = {bb_min[0] / SW_CULL_TILE_SIZE_X,
bb_min[1] / SW_CULL_TILE_SIZE_Y};
SWint bb_tile_max[2] = {bb_max[0] / SW_CULL_TILE_SIZE_X,
bb_max[1] / SW_CULL_TILE_SIZE_Y};
SWint mid_tile_y = sw_max(((SWint)mid_pixel[1]), 0) / SW_CULL_TILE_SIZE_Y;
SWint bb_mid_tile_y = sw_max(bb_tile_min[1], sw_min(bb_tile_max[1], mid_tile_y));
SWfloat slope[3];
slope[0] = edges[0][0] / edges[0][1];
slope[1] = edges[1][0] / edges[1][1];
slope[2] = edges[2][0] / edges[2][1];
SWfloat horizontal_slope_delta = ((SWfloat)ctx->w) + 2.0f * (1.0f + 1.0f);
if (edges[0][1] == (SWfloat)0) {
slope[0] = horizontal_slope_delta;
}
if (edges[1][1] == (SWfloat)0) {
slope[1] = -horizontal_slope_delta;
}
SWint slopei_fp[3];
slopei_fp[0] = (SWint)(slope[0] * (1 << FP_BITS));
slopei_fp[1] = (SWint)(slope[1] * (1 << FP_BITS));
slopei_fp[2] = (SWint)(slope[2] * (1 << FP_BITS));
// avoid cracks
slopei_fp[0] += 1;
slopei_fp[1] += edges[1][1] < 0.0f ? 0 : 1;
SWint slope_tile_delta[3];
slope_tile_delta[0] = slopei_fp[0] * SW_CULL_TILE_SIZE_Y;
slope_tile_delta[1] = slopei_fp[1] * SW_CULL_TILE_SIZE_Y;
slope_tile_delta[2] = slopei_fp[2] * SW_CULL_TILE_SIZE_Y;
SWint diffi[2][2];
diffi[0][0] = (((SWint)v0[0]) - bb_min[0]) << FP_BITS;
diffi[1][0] = (((SWint)mid_pixel[0]) - bb_min[0]) << FP_BITS;
diffi[0][1] = ((SWint)v0[1]) - bb_min[1];
diffi[1][1] = ((SWint)mid_pixel[1]) - bb_mid_tile_y * SW_CULL_TILE_SIZE_Y;
SWint event_start[3];
event_start[0] = diffi[0][0] - slopei_fp[0] * diffi[0][1];
event_start[1] = diffi[1][0] - slopei_fp[1] * diffi[1][1];
event_start[2] = diffi[0][0] - slopei_fp[2] * diffi[0][1];
//
// Split bounding box into bottom - middle - top region
//
SWint bbox_bottom_ndx = bb_tile_min[0] + bb_tile_min[1] * ctx->tile_w;
SWint bbox_top_ndx = bb_tile_min[0] + bb_tile_max[1] * ctx->tile_w;
SWint bbox_mid_ndx = bb_tile_min[0] + bb_mid_tile_y * ctx->tile_w;
SWint res = 0;
{ // Rasterize triangle
SWint bb_width = bb_tile_max[0] - bb_tile_min[0];
SWint bb_height = bb_tile_max[1] - bb_tile_min[1];
SWfloat tri_zmin = zmin;
SWfloat tri_zmax = zmax;
SWfloat z0[4] = {z_plane_offset + z_px_dy * 0 + z_px_dx * 0 * SW_CULL_SUBTILE_X,
z_plane_offset + z_px_dy * 0 + z_px_dx * 1 * SW_CULL_SUBTILE_X,
z_plane_offset + z_px_dy * 0 + z_px_dx * 2 * SW_CULL_SUBTILE_X,
z_plane_offset + z_px_dy * 0 + z_px_dx * 3 * SW_CULL_SUBTILE_X};
SWint tile_row_ndx = bbox_bottom_ndx;
SWint tile_mid_row_ndx = bbox_mid_ndx;
SWint tile_end_row_ndx = bbox_top_ndx;
mid_vtx_right = sw_abs(mid_vtx_right);
// Skip empty areas for big triangles
const SWint tight_traversal = bb_width > 3 && bb_height > 3;
const SWint flat_bottom = (bb_min[1] == mid_pixel[1]);
res |= _swRasterizeTriangle_Ref(
ctx, tile_row_ndx, tile_mid_row_ndx, tile_end_row_ndx, bb_width,
slope_tile_delta, event_start, tri_zmin, tri_zmax, z0, z_tile_dx, z_tile_dy,
mid_vtx_right, tight_traversal, flat_bottom, is_occluder);
if (res && !is_occluder) {
return 1;
}
}
return res;
}
#undef SIMD_WIDTH
#define SIMD_WIDTH 1
#define SW_MAX_CLIPPED (8 * SIMD_WIDTH)
SWint _swProcessTrianglesIndexed_Ref(SWcull_ctx *ctx, const void *attribs,
const SWuint *indices, const SWuint stride,
const SWuint index_count, const SWfloat *xform,
SWint is_occluder) {
union {
__m128 vec;
float f32[4];
} clipped_tris[SW_MAX_CLIPPED * 3];
SWint clip_head = 0, clip_tail = 0;
SWint res = 0;
SWuint tris_count = index_count / 3;
while (tris_count || clip_head != clip_tail) {
SWfloat vX[3], vY[3], vW[3]; // 1/w is used instead of Z
SWuint tri_mask = 0;
if (clip_head == clip_tail) { // clip buffer is empty
//
// Gather new vertices
//
for (SWint i = 0; i < 3; i++) {
const SWuint ii = indices[i];
vX[2 - i] = ((SWfloat *)((uintptr_t)attribs + ii * stride))[0];
vY[2 - i] = ((SWfloat *)((uintptr_t)attribs + ii * stride))[1];
vW[2 - i] = ((SWfloat *)((uintptr_t)attribs + ii * stride))[2];
}
tri_mask = 1;
tris_count -= 1;
indices += 3;
//
// Transform vertices
//
for (SWint i = 0; i < 3; i++) {
const SWfloat tmp_x =
vX[i] * xform[0] + vY[i] * xform[4] + vW[i] * xform[8] + xform[12];
const SWfloat tmp_y =
vX[i] * xform[1] + vY[i] * xform[5] + vW[i] * xform[9] + xform[13];
const SWfloat tmp_w =
vX[i] * xform[3] + vY[i] * xform[7] + vW[i] * xform[11] + xform[15];
vX[i] = tmp_x;
vY[i] = tmp_y;
vW[i] = tmp_w;
}
//
// Clip new triangles
//
SWuint intersects[_PlanesCount];
for (SWint plane = 0; plane < _PlanesCount; plane++) {
SWfloat plane_dp[3]; // plane dot products
for (SWint i = 0; i < 3; i++) {
switch (plane) {
case Left:
plane_dp[i] = vW[i] + vX[i];
break;
case Right:
plane_dp[i] = vW[i] - vX[i];
break;
case Top:
plane_dp[i] = vW[i] - vY[i];
break;
case Bottom:
plane_dp[i] = vW[i] + vY[i];
break;
case Near:
plane_dp[i] = vW[i] - ctx->near_clip;
break;
}
}
const SWuint fully_outside =
plane_dp[0] < 0.0f && plane_dp[1] < 0.0f && plane_dp[2] < 0.0f;
const SWuint fully_inside =
plane_dp[0] >= 0.0f && plane_dp[1] >= 0.0f && plane_dp[2] >= 0.0f;
intersects[plane] = !fully_outside && !fully_inside;
tri_mask &= ~fully_outside;
}
const SWuint needs_clipping =
(intersects[0] || intersects[1] || intersects[2] || intersects[3] ||
intersects[4]) &
tri_mask;
if (needs_clipping) {
__m128 temp_vtx_buf[2][8];
SWint curr_buf_ndx = 0;
SWint clipped_vtx_count = 3;
// unpack 3 initial vertices
for (SWint i = 0; i < 3; i++) {
temp_vtx_buf[0][i] = _mm128_setr_ps(vX[i], vY[i], vW[i], 1.0f);
}
for (SWint i = 0; i < _PlanesCount; i++) {
if (intersects[i]) {
const SWint next_buf_ndx = (curr_buf_ndx + 1) % 2;
clipped_vtx_count = _swClipPolygon(
temp_vtx_buf[curr_buf_ndx], clipped_vtx_count,
((__m128 *)ctx->clip_planes)[i], temp_vtx_buf[next_buf_ndx]);
curr_buf_ndx = next_buf_ndx;
}
}
if (clipped_vtx_count >= 3) {
clipped_tris[clip_head * 3 + 0].vec = temp_vtx_buf[curr_buf_ndx][0];
clipped_tris[clip_head * 3 + 1].vec = temp_vtx_buf[curr_buf_ndx][1];
clipped_tris[clip_head * 3 + 2].vec = temp_vtx_buf[curr_buf_ndx][2];
clip_head = (clip_head + 1) % SW_MAX_CLIPPED;
for (SWint i = 2; i < clipped_vtx_count - 1; i++) {
clipped_tris[clip_head * 3 + 0].vec =
temp_vtx_buf[curr_buf_ndx][0];
clipped_tris[clip_head * 3 + 1].vec =
temp_vtx_buf[curr_buf_ndx][i];
clipped_tris[clip_head * 3 + 2].vec =
temp_vtx_buf[curr_buf_ndx][i + 1];
clip_head = (clip_head + 1) % SW_MAX_CLIPPED;
}
}
tri_mask = 0;
}
}
if (clip_head != clip_tail) {
//
// Get vertices from clipped buffer
//
const SWint tri_ndx = clip_tail * 3;
for (SWint i = 0; i < 3; i++) {
vX[i] = clipped_tris[tri_ndx + i].f32[0];
vY[i] = clipped_tris[tri_ndx + i].f32[1];
vW[i] = clipped_tris[tri_ndx + i].f32[2];
}
clip_tail = (clip_tail + 1) % SW_MAX_CLIPPED;
tri_mask = 1;
}
if (!tri_mask) {
continue;
}
//
// Project vertices
//
for (SWint i = 0; i < 3; i++) {
const SWfloat rcpW = 1 / vW[i];
vX[i] = ceilf(vX[i] * ctx->half_w * rcpW + ctx->half_w);
vY[i] = floorf(vY[i] * (-ctx->half_h) * rcpW + ctx->half_h);
vW[i] = rcpW;
}
//
// Backface test
//
const SWfloat tri_area1 = (vX[1] - vX[0]) * (vY[2] - vY[0]);
const SWfloat tri_area2 = (vX[0] - vX[2]) * (vY[0] - vY[1]);
const SWfloat tri_area = (tri_area1 - tri_area2);
if (tri_area <= 0) {
continue;
}
if (tri_mask) {
SWfloat v0[3] = {vX[0], vY[0], vW[0]};
SWfloat v1[3] = {vX[1], vY[1], vW[1]};
SWfloat v2[3] = {vX[2], vY[2], vW[2]};
res |= _swProcessTriangle_Ref(ctx, v0, v1, v2, is_occluder);
if (res && !is_occluder) {
return 1;
}
}
}
return res;
}
SWint _swCullCtxTestRect_Ref(const SWcull_ctx *ctx, const SWfloat p_min[2],
const SWfloat p_max[3], const SWfloat w_min) {
#define SIMD_TILE_PAD _mm128_setr_epi32(0, SW_CULL_TILE_SIZE_X - 1, 0, SW_CULL_TILE_SIZE_Y - 1)
#define SIMD_TILE_PAD_MASK \
_mm128_setr_epi32(~(SW_CULL_TILE_SIZE_X - 1), ~(SW_CULL_TILE_SIZE_X - 1), \
~(SW_CULL_TILE_SIZE_Y - 1), ~(SW_CULL_TILE_SIZE_Y - 1))
#define SIMD_SUBTILE_PAD _mm128_setr_epi32(0, SW_CULL_SUBTILE_X, 0, SW_CULL_SUBTILE_Y)
#define SIMD_SUBTILE_PAD_MASK \
_mm128_setr_epi32(~(SW_CULL_SUBTILE_X - 1), ~(SW_CULL_SUBTILE_X - 1), \
~(SW_CULL_SUBTILE_Y - 1), ~(SW_CULL_SUBTILE_Y - 1))
const SWztile *ztiles = (SWztile *)ctx->ztiles;
__m128i *size = (__m128i *)ctx->size_ivec4;
__m128 *half_size = (__m128 *)ctx->half_size_vec4;
if (p_min[0] > p_max[0] || p_min[1] > p_max[1]) {
return 0;
}
__m128 px_bbox = _mm128_fmadd_ps(_mm128_setr_ps(p_min[0], p_max[0], p_min[1], p_max[1]),
(*half_size), (*half_size));
__m128i px_bboxi = _mm128_cvtps_epi32(px_bbox);
px_bboxi = _mm128_max_epi32(px_bboxi, _mm128_setzero_si128());
px_bboxi = _mm128_min_epi32(px_bboxi, (*size));
union {
__m128i vec;
SWint i32[4];
} tile_bboxi, subtile_bboxi;
tile_bboxi.vec =
_mm128_and_si128(_mm128_add_epi32(px_bboxi, SIMD_TILE_PAD), SIMD_TILE_PAD_MASK);
SWint tile_min_x = tile_bboxi.i32[0] >> SW_CULL_TILE_WIDTH_SHIFT;
SWint tile_max_x = tile_bboxi.i32[1] >> SW_CULL_TILE_WIDTH_SHIFT;
// SWint tile_min_y = tile_bboxi.i32[2] >> SW_CULL_TILE_HEIGHT_SHIFT;
// SWint tile_max_y = tile_bboxi.i32[3] >> SW_CULL_TILE_HEIGHT_SHIFT;
SWint tile_row_ndx = (tile_bboxi.i32[2] >> SW_CULL_TILE_HEIGHT_SHIFT) * ctx->tile_w;
SWint tile_row_end = (tile_bboxi.i32[3] >> SW_CULL_TILE_HEIGHT_SHIFT) * ctx->tile_w;
subtile_bboxi.vec = _mm128_and_si128(_mm128_add_epi32(px_bboxi, SIMD_SUBTILE_PAD),
SIMD_SUBTILE_PAD_MASK);
SWint stile_min_x = subtile_bboxi.i32[0];
SWint stile_min_y = subtile_bboxi.i32[2];
SWint stile_max_x = subtile_bboxi.i32[1];
SWint stile_max_y = subtile_bboxi.i32[3];
const SWint start_px_x[4] = {tile_bboxi.i32[0] + 0 * SW_CULL_SUBTILE_X,
tile_bboxi.i32[0] + 1 * SW_CULL_SUBTILE_X,
tile_bboxi.i32[0] + 2 * SW_CULL_SUBTILE_X,
tile_bboxi.i32[0] + 3 * SW_CULL_SUBTILE_X};
SWint px_y = tile_bboxi.i32[2];
const SWfloat z_max = 1 / w_min;
while (1) {
SWint px_x[4];
memcpy(px_x, start_px_x, 4 * sizeof(SWint));
SWint tile_x = tile_min_x;
while (1) {
const SWint tile_ndx = tile_row_ndx + tile_x;
#ifdef SW_CULL_QUICK_MASK
const SWfloat *z_min0_buf = ztiles[tile_ndx].zmin[0];
#else
#error "Not implemented!"
#endif
uint32_t z_pass = 0;
for (SWint j = 0; j < 4; j++) {
if (z_max >= z_min0_buf[j] && px_x[j] >= stile_min_x &&
px_y >= stile_min_y && px_x[j] < stile_max_x && px_y < stile_max_y) {
z_pass |= (0xff << j * 8);
}
}
if (z_pass) {
return 1;
}
if (++tile_x >= tile_max_x) {
break;
}
for (SWint j = 0; j < 4; j++) {
px_x[j] += SW_CULL_TILE_SIZE_X;
}
}
tile_row_ndx += ctx->tile_w;
if (tile_row_ndx >= tile_row_end) {