-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_sa_alloc.py
456 lines (393 loc) · 21.1 KB
/
analyze_sa_alloc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#####################################################################
# A Module that analyzes sa_alloc results
#####################################################################
#%% import settings
from alloc import Alloc
from sa_alloc import *
import numpy as np
import pandas as pd
import glob
import ast
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from scipy.interpolate import interp1d
import plot
import json
import pickle
colors = sns.color_palette("tab10", n_colors= 5)
custom_cmap = ListedColormap(colors)
color = [custom_cmap(i) for i in range(5)]
marker = ['o','s','D','^','v']*5
title_font_size = 20
label_font_size = 16
tick_font_size = 14
age_label = ['0-17','18-34','35-49','50-64','65+']
reg_label = ['Seattle','Seattle\nEast','FAV','ITM', 'ES']
group_label = ['1,1','1,2','1,3','1,4','1,5']
sa_param = ['vaccine_risk', 'p_emotional','k_R', 'k_E']
mapping = {'cost_vacc_0': 'tot_benefits_vacc', 'cost_deaths_0': 'tot_benefits_deaths', 'disparity_vacc_0':'min_benefits_vacc_per_pop' }
num_pop = 2195285
# %% read all data and combine into one
re_order = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4] # function needed to sort results by population size
def reorder_list(lst, re_order):
return [lst[i] for i in re_order]
def unpack_tuples(row):
return {key: value for key, value in row}
def clean_data(date = '0220'):
import os
folder_path = 'Results/SA_Result'
file_pattern = f'*{date}*.pkl'
matching_files = glob.glob(os.path.join(folder_path, file_pattern))
dfs = []
for file_path in matching_files:
print(file_path)
df = pd.read_pickle(file_path)
df['B'] = int(file_path.split('B')[-1].split('_')[1])
df['source'] = file_path.split('_')[-1].split('.')[0]
dfs.append(df)
df['obj'] = df['obj'].replace(mapping)
df = df.rename(columns=mapping)
glob_df = pd.concat(dfs, ignore_index=True)
glob_df['param_update'] = glob_df['param_update'].apply(lambda x: ast.literal_eval(x))
pd.concat([glob_df['param_update'].apply(lambda x: unpack_tuples(x)).apply(pd.Series)
, glob_df], axis=1)
glob_df = pd.concat([glob_df['param_update'].apply(lambda x: unpack_tuples(x)).apply(pd.Series)
, glob_df], axis=1)
glob_df['org_alloc'] = glob_df['alloc'].copy() # Keep the original alloc results
glob_df['alloc'] = glob_df['alloc'].apply(lambda x: reorder_list(x, re_order))
glob_df.to_csv(f'Results/Refined_result/refined_sa_{date}_king.csv')
glob_df.to_pickle(f'Results/Refined_result/refined_sa_{date}_king.pkl')
def format_annotation(value):
quotient = value // 5+1
remainder = value % 5+1
return f"({int(quotient)},{int(remainder)})"
def format_annotation_list(list):
text = ''
if len(list) == 5 and all(list[i] == list[i-1] + 1 for i in range(1, 5)):
return f'Reg {list[0] // 5 + 1}'
elif len(list) == 5 and all(list[i] == list[i-1] + 5 for i in range(1, 5)):
return f'Age {list[0] % 5 + 1}'
for index, value in enumerate(list):
quotient = value // 5 + 1
remainder = value % 5 + 1
if index > 0:
text += ', '
text += f"({int(quotient)},{int(remainder)})"
return text
def run_model(B_list, sa_list, glob_df):
columns_to_create = ['base_result', 'campaign_result', 'base_eta', 'campaign_eta', 'base_eta_all', 'campaign_eta_all']
for col in columns_to_create:
if col not in glob_df.columns:
glob_df[col] = None # or any default value suitable for your data type
glob_ret_list = []
glob_eta_list = []
glob_all_eta_list = []
glob_best_alloc_list = []
for B in B_list:
ret_list = []
eta_list = []
all_eta_list = []
best_alloc_list = []
for sa in sa_list:
init_param_list = sa.copy()
alc = Alloc(fips_num = 53033, obj_type = 'all', alg='reg_age',
B=B, init_param_list = init_param_list)
row = glob_df[(glob_df['p_emotional'] == sa[0][1]) &
(glob_df['vaccine_risk'] == sa[1][1]) &
(glob_df['k_R'] == sa[2][1]) &
(glob_df['k_E'] == sa[3][1]) &
(glob_df['B'] == B) &
(glob_df['obj'] == obj)]['org_alloc']
if len(row)>0:
best_alloc = row.iloc[0]
best_alloc_list.append(best_alloc)
alloc_test = [np.zeros(25), np.array(best_alloc)]
rets,etas,all_etas = alc.run_code(parallel=False, alloc_list = alloc_test, save_result = True)
for ret in rets: ret_list.append(ret)
for eta in etas: eta_list.append(eta)
for all_eta in all_etas: all_eta_list.append(all_eta)
glob_ret_list.append(ret_list)
glob_eta_list.append(eta_list)
glob_all_eta_list.append(all_eta_list)
glob_best_alloc_list.append(best_alloc_list)
return (glob_ret_list, glob_eta_list, glob_all_eta_list, glob_best_alloc_list)
#%% Read data
date='0225_base'
clean_data(date)
filename = f'Results/Refined_result/refined_sa_{date}_king.pkl'
glob_df = pd.read_pickle(filename)
glob_df = glob_df[(glob_df['vaccine_risk'].isin([0, 1.5e-4, 3e-4])) & (glob_df['p_emotional'].isin([0, 0.5, 1]))]
obj = 'tot_benefits_vacc'
obj_outcome_list = [obj]
outcome_list = obj_outcome_list+['max_alloc']
nu = [round(i,5) for i in glob_df['vaccine_risk'].unique()]
rho = glob_df['p_emotional'].unique()
glob_df = glob_df.sort_values(by=['B']+sa_param, ascending=True)
B_list = glob_df.B.unique()
sa_list = glob_df['param_update'].values
#%% Run model to get more detailed results
B_list = [20000]
glob_ret_list, glob_eta_list, glob_all_eta_list, glob_best_alloc_list = run_model(B_list, sa_list, glob_df)
#%% Plot figure 3
num_row = 3
num_col = num_row
plt.rcdefaults()
title_font_size = 20
label_font_size = 15
labels = ['No campaign', 'Optimal campaign']
color = ['grey','blue']
for B in [20000]:
B_ind = B_list.index(B)
fig, axes = plt.subplots(num_row, num_col, figsize=(4+3*num_col, 3*num_row))
for k in range(num_row*num_col):
ax = axes[k//num_col, k%num_col]
eta_per_group = []
for i in range(2):
[SA, IA, RA, DA, SP, IP, RP, DP] = np.transpose(np.reshape(np.array(glob_ret_list[B_ind][2*k+i]), (len(glob_ret_list[B_ind][0]), 25, 8)))
A = SA + IA + RA
P = SP + IP + RP
N = A + P
I = IA + IP
y = np.sum(P, axis=0)/np.sum(N, axis=0)
x = np.array([i for i in range(len(y))])
eta_per_group.append([x, y])
for i, eta in enumerate(eta_per_group):
x, y = eta
ax.plot(x, y.T,
linewidth = 2.5,
color = color[i],
alpha =1,
linestyle = 'dashed' if i%2==0 else '-',
label = labels[i%2] if k==0 else None)
if i%2==1:
f0 = interp1d(eta_per_group[0][0], (eta_per_group[0][1]).T, kind='linear', fill_value='extrapolate')(x)
f1 = interp1d(eta_per_group[1][0], (eta_per_group[1][1]).T, kind='linear', fill_value='extrapolate')(x)
cumul_benefit = np.zeros((f0[0]).shape)
ax.fill_between(x, f0, f1, color = 'skyblue', alpha=0.5)
ax.text(x[-1], 0.1, f'Total increase: {round((f1-f0)[-1]*100,1)}%', fontsize=label_font_size, ha='right', color='red')
ax.set_title(f'({chr(97 + k)}) $\\nu={nu[k//num_col]}$, $\\rho={rho[k%num_col]}$', fontsize=title_font_size-5)
ax.set_xlabel('Month', size=12+5)
interval = 30.4*2
ax.set_xticks([i*interval for i in range(int(np.ceil(len(x)/interval)))])
ax.set_xticklabels([int(interval/30.4*i) for i in range(int(np.ceil(len(x)/interval)))], size=15)
ax.set_ylabel('P(t)/N(t)', size=label_font_size-3)
ax.set_yticks([0, 0.25, 0.5, 0.75, 1])
ax.set_yticklabels(['0%', '25%', '50%', '75%', '100%'], size=15)
fig.legend(bbox_to_anchor=(1.23, 0.57), ncol=1, title='Campaign', fontsize=15, title_fontsize = 18)
fig.text(-0.06, 0.5, f'Perceived Vaccine risk ($\\nu$)', ha='center', va='center', rotation=90, fontsize = title_font_size, weight='bold')
fig.text(-0.02, 0.17, f'High\n($\\nu=${nu[2]})', ha='center', va='center', rotation=90, fontsize = label_font_size, weight='bold')
fig.text(-0.02, 0.49, f'Medium\n($\\nu=${nu[1]})', ha='center', va='center', rotation=90, fontsize = label_font_size, weight='bold')
fig.text(-0.02, 0.78, f'Low\n($\\nu=${nu[0]})', ha='center', va='center', rotation=90, fontsize = label_font_size, weight='bold')
fig.text(0.5, -0.1, f'Importance of emotional judgment ($\\rho$)', ha='center', va='center', rotation=0, fontsize = title_font_size, weight='bold')
fig.text(0.2, -0.03, f'Rational\n($\\rho=0$)', ha='center', va='center', rotation=0, fontsize = label_font_size, weight='bold')
fig.text(0.53, -0.03, f'Balanced\n($\\rho=0.5$)', ha='center', va='center', rotation=0, fontsize = label_font_size, weight='bold')
fig.text(0.86, -0.03, f'Emotional\n($\\rho=1$)', ha='center', va='center', rotation=0, fontsize = label_font_size, weight='bold')
plt.suptitle('Changes in vaccinated population with optimal campaign\n', fontsize = title_font_size, weight='bold')
plt.tight_layout()
# plt.savefig(f'Results/Plot/Vacc_B_{B}.png', transparent=False, dpi=300, bbox_inches='tight')
plt.show()
#%% Plot figure 4
vary = ['vaccine_risk', 'p_emotional']
title_font_size = 14+2 # Adjust the title font size
label_font_size = 10+2 # Adjust the axis labels' font size
tick_font_size = 10
for B_to_plot in [20000]:
plot_df = glob_df[glob_df['B']==B_to_plot]
plot_df = plot_df[(plot_df['vaccine_risk'].isin([0, 1.5e-4, 3e-4])) & (plot_df['p_emotional'].isin([0, 0.5, 1]))]
plot_df = plot_df.sort_values(vary)
num_row = len(plot_df[vary[0]].unique())
num_col = len(plot_df[vary[1]].unique())
fig, axes = plt.subplots(num_row, num_col, figsize=(4+3.5*num_col, 1.5*num_row))
plt.rcdefaults()
for k in range(num_row*num_col):
ax = axes[k//num_col, k%num_col]
res = np.array(plot_df.alloc.iloc[k]).reshape((5,5))
region = np.sum(res, axis=1)/B_to_plot
age = np.sum(res, axis=0).T/B_to_plot
sns.heatmap([np.concatenate((region, age), axis=0)], ax=ax, cmap='Blues', cbar=False, vmax=1, annot=True, fmt='.0%',
annot_kws={'fontsize': tick_font_size+1})
ax.axvline(x=5, color='black', linestyle='-', linewidth = 2.5)
numbers = [i for i in range(1,6)]
x_tick_labels = [f'{i}\nRegion' if i == 3 else f'{i}' for i in numbers] + [f'{age_label[i-1]}\nAge' if i == 3 else f'{age_label[i-1]}' for i in numbers]
ax.set_xticks(np.arange(len(x_tick_labels))+0.5, x_tick_labels, rotation=0, fontsize = tick_font_size)
ax.set_yticks([])
x_min, x_max = ax.get_xlim()
y_min, y_max = ax.get_ylim()
rect = plt.Rectangle((x_min, y_min), x_max - x_min, y_max - y_min, linewidth=2, edgecolor='black', facecolor='none')
ax.add_patch(rect)
ax.set_title(f'({chr(97 + k)}) $\\nu={nu[k//num_col]}$, $\\rho={rho[k%num_col]}$', fontsize = label_font_size)
fig.text(-0.06, 0.5, f'Perceived Vaccine risk ($\\nu$)', ha='center', va='center', rotation=90, fontsize = title_font_size, weight='bold')
fig.text(-0.02, 0.18, f'High\n($\\nu=${nu[2]})', ha='center', va='center', rotation=90, fontsize = label_font_size, weight='bold')
fig.text(-0.02, 0.47, f'Medium\n($\\nu=${nu[1]})', ha='center', va='center', rotation=90, fontsize = label_font_size, weight='bold')
fig.text(-0.02, 0.8, f'Low\n($\\nu=${nu[0]})', ha='center', va='center', rotation=90, fontsize = label_font_size, weight='bold')
fig.text(0.5, -0.1, f'Importance of emotional judgment ($\\rho$)', ha='center', va='center', rotation=0, fontsize = title_font_size, weight='bold')
fig.text(0.17, -0.03, f'Rational ($\\rho=0$)', ha='center', va='center', rotation=0, fontsize = label_font_size, weight='bold')
fig.text(0.5, -0.03, f'Balanced ($\\rho=0.5$)', ha='center', va='center', rotation=0, fontsize = label_font_size, weight='bold')
fig.text(0.83, -0.03, f'Emotional ($\\rho=1$)', ha='center', va='center', rotation=0, fontsize = label_font_size, weight='bold')
plt.suptitle('Optimal Campaign Allocation by Region and by Age', fontsize = title_font_size, weight='bold')
plt.tight_layout()
# plt.savefig(f'Results/Plot/Alloc_B_{B_to_plot}.png', transparent=False, dpi=200, bbox_inches='tight')
plt.show()
#%%
################
# One-way sensitivity analysis
################
org = pd.read_pickle( f'Results/Refined_result/refined_sa_0225_base_king.pkl')
krke = pd.read_pickle( f'Results/Refined_result/refined_sa_0225_kr_ke_king.pkl')
deaths = pd.read_pickle( f'Results/Refined_result/refined_sa_0225_deaths_king.pkl')
fb = pd.read_pickle( f'Results/Refined_result/refined_sa_0225_fb_king.pkl')
disp = pd.read_pickle( f'Results/Refined_result/refined_sa_0225_disparity_king.pkl')
# Combine to single df
org['source'] = 'base'
krke['source'] = 'krke'
fb['source'] = 'fb'
deaths['source'] = 'obj_deaths'
disp['source'] = 'obj_disp'
final_df = pd.concat([org, krke])
final_df = pd.concat([final_df, fb])
final_df = pd.concat([final_df, deaths])
final_df = pd.concat([final_df, disp])
final_df.reset_index()
final_df = final_df.rename(columns=mapping)
final_df['obj'] = final_df['obj'].replace(mapping)
final_df.to_pickle(f'Results/Refined_result/refined_sa_0225_all_king.pkl')
with np.printoptions(linewidth=10000):
final_df.to_csv(f'Results/Refined_result/refined_sa_0225_all_king.csv')
# Select rows
final_df = pd.read_pickle('Results/Refined_result/refined_sa_0225_all_king.pkl')
sa_df = final_df[(final_df['vaccine_risk']==0.00015) & (final_df['p_emotional']==0.5) ]
base_row = sa_df[(sa_df['k_R']==20000) & (sa_df['k_E']==12) & (sa_df['source']=='base') & (sa_df['B']==20000)]
B_row = sa_df[(sa_df['k_R']==20000) & (sa_df['k_E']==12) & (sa_df['source']=='base')].sort_values('B')
kr_row = sa_df[(sa_df['k_E']==12) & (sa_df['source']=='krke')].sort_values('k_R')
ke_row = sa_df[(sa_df['k_R']==20000) & (sa_df['source']=='krke')].sort_values('k_E')
death_row = sa_df[(sa_df['source']=='obj_deaths')]
disp_row = sa_df[(sa_df['source']=='obj_disp')]
fb_row = sa_df[(sa_df['source']=='fb')]
dfs = [pd.DataFrame(row) for row in [base_row, B_row, kr_row, ke_row, death_row, disp_row]]
sa_df_final = pd.concat(dfs, ignore_index=True)
sa_df_final.to_pickle(f'Results/Refined_result/refined_sa_0225_sa_king.pkl')
with np.printoptions(linewidth=10000):
sa_df_final.to_csv(f'Results/Refined_result/refined_sa_0225_sa_king.csv')
base_val = base_row['tot_benefits_vacc'].values[0]/num_pop
base_alloc = np.array(base_row['alloc'].values[0]).reshape((5,5))
B_val = B_row['tot_benefits_vacc'].values/num_pop
kr_val = kr_row['tot_benefits_vacc'].values/num_pop
ke_val =ke_row['tot_benefits_vacc'].values/num_pop
death_val = death_row['tot_benefits_vacc'].values/num_pop
disp_val = disp_row['tot_benefits_vacc'].values/num_pop
fb_val = fb_row['tot_benefits_vacc'].values/num_pop
# Prepare for tornado plot results (Figure 5)
def divide_alloc_results(alloc_list):
final_list = []
for alloc in alloc_list:
res = np.array(alloc).reshape((5,5))
B = np.sum(res)
region = np.sum(res, axis=1)/B
age = np.sum(res, axis=0).T/B
final_list.append([np.concatenate((region, age), axis=0)])
return (final_list)
def get_tornado(val_list):
base = 0
low = (val_list[0] - val_list[1])
high = (val_list[2] - val_list[1])
return ([[low],[high]])
val_list = [[[0]]]
val_list.append(get_tornado(B_val))
val_list.append(get_tornado(kr_val))
val_list.append(get_tornado(ke_val))
val_list.append([[fb_val[0]-base_val]])
val_list.append([[death_val[0] - base_val]])
val_list.append([[disp_val[0] - base_val]])
val_list = np.concatenate([np.concatenate(sublist, axis=0) for sublist in val_list], axis=0).reshape((10,1))[::-1]*100
# Prepare for allocation results (Figure 5)
B_alloc = B_row.sort_values('B')['alloc'].values
kr_alloc = kr_row.sort_values('k_R')['alloc'].values
ke_alloc = ke_row.sort_values('k_E')['alloc'].values
fb_alloc = fb_row['alloc'].values
death_alloc = death_row['alloc'].values
disp_alloc = disp_row['alloc'].values
sa_alloc = []
sa_alloc.append(divide_alloc_results(B_alloc))
sa_alloc.append(divide_alloc_results(kr_alloc))
sa_alloc.append(divide_alloc_results(ke_alloc))
sa_alloc.append(divide_alloc_results(fb_alloc))
sa_alloc.append(divide_alloc_results(death_alloc))
sa_alloc.append(divide_alloc_results(disp_alloc))
sa_alloc = np.concatenate([np.concatenate(sublist, axis=0) for sublist in sa_alloc], axis=0)
#%% Plot tornado plot
import matplotlib.colors as mcolors
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
yticklabels = ['Base Case','C=10,000','C=50,000','High rational sensitivity (k_R = 1/15000)','Low rational sensitivity (k_R = 1/25000)',
'High emotional sensitivity(k_E = 1/9)','Low emotional sensitivity (k_E = 1/15)'
,f'Use facebook data for $O_{{ij}}$', 'Objective: Avert deaths','Objective: Max-min vaccine increase (%)'][::-1]
for i, val in enumerate(val_list):
print(i, val)
plt.barh([i,i,i], val, color=[color[1] if x < 0 else color[0] for x in val])
plt.yticks(np.arange(len(yticklabels)), yticklabels, fontsize = title_font_size-10)
plt.axvline(x=0, linewidth = 2.5, color='black')
ax.set_xlim(val_list.min()*1.5, val_list.max()*1.5)
ax.set_xlabel('Absolute Percentage Change (%)', size = label_font_size-5)
ax.set_title('Impact of Parameter Changes on Vaccinated Population', size=title_font_size-5, pad=15)
plt.tight_layout()
plt.savefig(f'Results/Plot/Tornado_SA.png',bbox_inches='tight')
plt.show()
#%% Plot allocation results - version 1
colors = sns.color_palette("tab10", n_colors= 2)
custom_cmap = ListedColormap(colors)
color = [custom_cmap(i) for i in range(2)]
fig, axes = plt.subplots(len(yticklabels), 1, figsize=(10, 6))
plt.rcdefaults()
for k in range(len(yticklabels)):
ax = axes[k]
sns.heatmap([np.concatenate((val_list[len(yticklabels) -1-k]/100, sa_alloc[k]))] , ax=ax, cmap='Blues', cbar=False, vmin=0, vmax=1, annot=True, fmt='.0%')
ax.axvline(x=5+1, color='black', linestyle='-', linewidth = 2.5)
ax.axvline(x=1, color='white', linestyle='-', linewidth = 10)
numbers = [i for i in range(1,6)]
# x_tick_labels = ['']
x_tick_labels = [f'{i}\nRegion' if i == 3 else f'{i}' for i in numbers] + [f'{age_label[i-1]}\nAge' if i == 3 else f'{age_label[i-1]}' for i in numbers]
if k==len(yticklabels) -1: ax.set_xticks(np.arange(len(x_tick_labels))+1.5, x_tick_labels, rotation=0)
else:ax.set_xticks([])
ax.set_yticks([0.5])
ax.set_yticklabels([yticklabels[len(yticklabels) -1 - k]], rotation=0)
x_min, x_max = ax.get_xlim()
y_min, y_max = ax.get_ylim()
rect = plt.Rectangle((x_min, y_min), x_max - x_min, y_max - y_min, linewidth=2, edgecolor='black', facecolor='none')
ax.add_patch(rect)
color_val = val_list[len(yticklabels) -1-k]/100
cmap = mcolors.LinearSegmentedColormap.from_list('coolwarm', ['orangered', 'white','#1E90FF'])
cmap = mcolors.LinearSegmentedColormap.from_list('coolwarm', [color[1], 'white',color[0]])
# cmap = plt.cm.get_cmap('coolwarm')
rect_color = cmap(0.5 + color_val * 5) # Adjust scaling for visual sensitivity
rect = plt.Rectangle((x_min, y_min), 1, y_max - y_min, linewidth=2, edgecolor=None, facecolor=rect_color, alpha=1.0)
ax.add_patch(rect)
if k==0:
ax.text(0.5, -0.75, 'Vaccination\npopulation (%)', ha='center', va='center', rotation=0, fontsize=label_font_size-7, color='black')
ax.text(6, -0.5, 'Optimal allocation by Region and Age', ha='center', va='center', rotation=0, fontsize=label_font_size-3, color='black')
plt.suptitle('Sensitivity Analysis', fontsize = title_font_size-5, weight='bold')
plt.tight_layout()
plt.savefig(f'Results/Plot/SA_all.png', transparent=False, dpi=200, bbox_inches='tight')
plt.show()
# %% Plot allocation results - version 2
fig, axes = plt.subplots(len(yticklabels), 1, figsize=(8, 6))
plt.rcdefaults()
for k in range(len(yticklabels)):
ax = axes[k]
sns.heatmap([sa_alloc[k]], ax=ax, cmap='Blues', cbar=False, vmin=0, vmax=1, annot=True, fmt='.0%')
ax.axvline(x=5, color='black', linestyle='-', linewidth = 2.5)
# ax.axvline(x=1, color='white', linestyle='-', linewidth = 10)
numbers = [i for i in range(1,6)]
# x_tick_labels = ['']
x_tick_labels = [f'{i}\nRegion' if i == 3 else f'{i}' for i in numbers] + [f'{age_label[i-1]}\nAge' if i == 3 else f'{age_label[i-1]}' for i in numbers]
if k==len(yticklabels)-1: ax.set_xticks(np.arange(len(x_tick_labels))+0.5, x_tick_labels, rotation=0)
else:ax.set_xticks([])
ax.set_yticks([0.5])
ax.set_yticklabels([yticklabels[len(yticklabels)-1-k]], rotation=0)
x_min, x_max = ax.get_xlim()
y_min, y_max = ax.get_ylim()
rect = plt.Rectangle((x_min, y_min), x_max - x_min, y_max - y_min, linewidth=4, edgecolor='black', facecolor='none')
ax.add_patch(rect)
plt.suptitle('Sensitivity Analysis', fontsize = title_font_size-5, weight='bold')
plt.tight_layout()
plt.savefig(f'Results/Plot/SA_alloc.png', transparent=False, dpi=200, bbox_inches='tight')
plt.show()