-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinference.py
150 lines (103 loc) · 4.51 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import sys
# import yaml
import argparse
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import torch
import torchvision
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
import modules
import datasets
from utils import parse_args, save_config, find_best_epoch, process_results
def cli_main():
argv = sys.argv[1:]
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", default=None, help="where to load YAML configuration", metavar="FILE")
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument('--task', default='a', help='the task to test.')
parser.add_argument('--test_set', type=str, default='', help='the test set split. If "gen" is chosen the model will be tested on the generalization test set.')
parser.add_argument('--load_checkpoint', action='store_true', help='resume training from checkpoint training')
args = parse_args(parser, argv)
# trainer args
parser = pl.Trainer.add_argparse_args(parser)
# model args
model_type = vars(modules)[args.model]
parser = model_type.add_model_specific_args(parser)
# dataset args
dataset_type = vars(datasets)[args.dataset]
parser = dataset_type.add_dataset_specific_args(parser)
args = parse_args(parser, argv)
# dataset args
dataset_type = vars(datasets)[args.dataset]
# initializing the dataset and model
datamodule = dataset_type(**args.__dict__)
###################################################################################################
# checkpoint loading and setup
if args.load_checkpoint:
ckpt = list(filter(lambda x: '.ckpt' in x, os.listdir(args.exp_dir)))[0]
ckpt = os.path.join(args.exp_dir, ckpt)
print('Loading checkpoint', ckpt)
model = model_type.load_from_checkpoint(ckpt)
else:
model = model_type(**args.__dict__)
run_test = True
save_db = True
if run_test:
logger = TensorBoardLogger(args.exp_dir, default_hp_metric=False)
trainer = pl.Trainer.from_argparse_args(args)
trainer.test(model=model, datamodule=datamodule)
train_result = model.test_results
global_avg, per_task, per_task_avg = process_results(train_result, args.task)
log_metrics = {'hp/'+k : v for k, v in global_avg.items()}
print(log_metrics)
print('model device', model.device)
if run_test:
logger.log_hyperparams(model.hparams, metrics=log_metrics)
logger.save()
###################################################################################################
# saving results
if save_db:
output_dict = {
'0_train': 0,
'0_exp_name': args.exp_name,
'0_exp_dir': args.exp_dir,
'0_model': args.model,
'0_seed': args.seed,
'0_dataset': args.dataset,
'0_checkpoint': args.checkpoint,
'0_test_set': args.test_set,
'0_finetune': args.finetune,
'0_freeze_pretrained': args.freeze_pretrained,
'1_task': args.task,
'1_n_samples': args.n_samples,
'3_max_epochs': args.max_epochs,
'3_backbone': args.backbone,
'3_batch_size': args.batch_size,
'3_lr': args.lr,
'3_wd': args.wd,
}
output_dict.update({'2_'+k:v for k,v in global_avg.items()})
output_dict.update({'5_'+k:v for k,v in per_task_avg.items()})
#### merges files if file exists
results_save_path = os.path.join(args.exp_dir, 'results.npy')
if os.path.exists(results_save_path):
results_file = np.load(results_save_path, allow_pickle=True).item()
for k, v in per_task.items():
results_file['per_task'][k] = v
for k, v in per_task_avg.items():
results_file['per_task_avg'][k] = v
else:
results_file = {'global_avg': global_avg, 'per_task_avg': per_task_avg, 'per_task': per_task}
np.save(results_save_path, results_file)
db_file = os.path.join(args.path_db, args.exp_name + '_db.csv')
if os.path.exists(db_file):
df = pd.read_csv(db_file, index_col=0)
else:
df = pd.DataFrame()
df = df.append(output_dict, ignore_index=True)
df.to_csv(db_file)
if __name__ == '__main__':
print(os.getpid())
cli_main()