-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclickme_prepare_maps_for_modeling.py
294 lines (257 loc) · 13.5 KB
/
clickme_prepare_maps_for_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os, sys
import numpy as np
from PIL import Image
import json
import pandas as pd
from matplotlib import pyplot as plt
from src import utils
from tqdm import tqdm
def get_medians(point_lists, mode='image', thresh=50):
medians = {}
if mode == 'image':
for image in point_lists:
clickmaps = point_lists[image]
num_clicks = []
for clickmap in clickmaps:
num_clicks.append(len(clickmap))
if num_clicks: # Check if the list is not empty
medians[image] = np.percentile(num_clicks, thresh)
else:
medians[image] = 0 # Default value when no clicks
elif mode == 'category':
for image in point_lists:
category = image.split('/')[0]
if category not in medians.keys():
medians[category] = []
clickmaps = point_lists[image]
for clickmap in clickmaps:
medians[category].append(len(clickmap))
for category in medians:
if medians[category]: # Check if the list is not empty
medians[category] = np.percentile(medians[category], thresh)
else:
medians[category] = 0 # Default value when no clicks
elif mode == 'all':
num_clicks = []
for image in point_lists:
clickmaps = point_lists[image]
for clickmap in clickmaps:
num_clicks.append(len(clickmap))
if num_clicks: # Check if the list is not empty
medians['all'] = np.percentile(num_clicks, thresh)
else:
medians['all'] = 0 # Default value when no clicks
print("Warning: No clicks found when calculating 'all' median")
else:
raise NotImplementedError(mode)
return medians
if __name__ == "__main__":
# Get config file
config_file = utils.get_config(sys.argv)
# Other Args
# blur_sigma_function = lambda x: np.sqrt(x)
# blur_sigma_function = lambda x: x / 2
blur_sigma_function = lambda x: x
# Load config
config = utils.process_config(config_file)
clickme_data = utils.process_clickme_data(
config["clickme_data"],
config["filter_mobile"])
output_dir = config["assets"]
image_output_dir = config["example_image_output_dir"]
blur_size = config["blur_size"]
blur_sigma = blur_sigma_function(blur_size)
min_pixels = (2 * blur_size) ** 2 # Minimum number of pixels for a map to be included following filtering
# Load metadata
if config["metadata_file"]:
metadata = np.load(config["metadata_file"], allow_pickle=True).item()
else:
metadata = None
# Start processing
os.makedirs(image_output_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
os.makedirs(os.path.join(output_dir, config["experiment_name"]), exist_ok=True)
# Process data in chunks to avoid memory issues
# Instead of loading all 5.3M+ images at once, process in manageable batches
print(f"Processing clickme data in chunks...")
# Determine whether to use parallel processing
# For very large datasets, sometimes serial processing with efficient chunking is faster
# due to reduced overhead and better memory management
chunk_size = 100000 # Adjust based on available memory
total_images = len(clickme_data)
# Process all data in chunks
all_final_clickmaps = {}
all_final_keep_index = []
# Calculate number of chunks
num_chunks = (total_images + chunk_size - 1) // chunk_size
# Use a simple progress tracking system with tqdm - prettier hierarchy
print("\nProcessing clickme data in chunks...")
with tqdm(total=num_chunks, desc="├─ Processing chunks", position=0, leave=True, colour="blue") as pbar:
for chunk_idx in range(num_chunks):
chunk_start = chunk_idx * chunk_size
chunk_end = min(chunk_start + chunk_size, total_images)
# Use a clear, hierarchical format for chunk info
print(f"\n├─ Chunk {chunk_idx + 1}/{num_chunks} ({chunk_start}-{chunk_end})")
# Create a DataFrame that process_clickmap_files can work with
chunk_data = clickme_data.iloc[chunk_start:chunk_end]
l = len(chunk_data["image_path"])
print(f"│ ├─ Debug: Initial chunk has {l} images")
# Process chunk data
print(f"│ ├─ Processing clickmap files...")
chunk_clickmaps, chunk_clickmap_counts = [], []
counts = []
for chunk in chunk_data:
clickmaps, ccounts = utils.process_clickmap_files(
clickme_data=chunk_data,
image_path=config["image_path"],
file_inclusion_filter=config["file_inclusion_filter"],
file_exclusion_filter=config["file_exclusion_filter"],
min_clicks=config["min_clicks"],
max_clicks=config["max_clicks"])
chunk_clickmaps.append(clickmaps)
chunk_clickmap_counts.append(ccounts)
counts.append(len(clickmaps))
counts = np.sum(counts)
print(f"│ ├─ Debug: After processing clickmap files: {counts} images")
# Apply all filters to the chunk
if config["class_filter_file"]:
print(f"│ ├─ Filtering classes...")
chunk_clickmaps = utils.filter_classes(
clickmaps=chunk_clickmaps,
class_filter_file=config["class_filter_file"])
print(f"│ ├─ Debug: After class filtering: {len(chunk_clickmaps)} images")
if config["participant_filter"]:
print(f"│ ├─ Filtering participants...")
chunk_clickmaps = utils.filter_participants(chunk_clickmaps)
print(f"│ ├─ Debug: After participant filtering: {len(chunk_clickmaps)} images")
# Process maps for this chunk with our custom progress wrapper
use_parallel = config.get("parallel_prepare_maps", True)
n_jobs = -1 if use_parallel else 1
parallel_text = "parallel" if use_parallel else "serial"
# Get GPU batch size from config or use default
gpu_batch_size = config.get("gpu_batch_size", 32)
# Use GPU optimized blurring by default, can be disabled with use_gpu_blurring=False
use_gpu_blurring = config.get("use_gpu_blurring", True)
if use_gpu_blurring:
print(f"│ ├─ Preparing maps with GPU-optimized blurring (batch_size={gpu_batch_size}, n_jobs={n_jobs})...")
else:
print(f"│ ├─ Preparing maps ({parallel_text}, n_jobs={n_jobs})...")
# Add debug print to check if chunk_clickmaps is empty
if not chunk_clickmaps:
raise ValueError(f"│ ├─ WARNING: No images to process after filtering! Check your filter settings.")
else:
# Choose the appropriate processing function based on config
if use_gpu_blurring:
# Use GPU-optimized batched processing
chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories, chunk_final_keep_index = utils.prepare_maps_with_gpu_batching(
final_clickmaps=chunk_clickmaps,
blur_size=blur_size,
blur_sigma=blur_sigma,
image_shape=config["image_shape"],
min_pixels=min_pixels,
min_subjects=config["min_subjects"],
metadata=metadata,
blur_sigma_function=blur_sigma_function,
center_crop=False,
n_jobs=n_jobs,
batch_size=gpu_batch_size)
else:
# Use the original CPU-based processing
chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories, chunk_final_keep_index = utils.prepare_maps_with_progress(
final_clickmaps=chunk_clickmaps,
blur_size=blur_size,
blur_sigma=blur_sigma,
image_shape=config["image_shape"],
min_pixels=min_pixels,
min_subjects=config["min_subjects"],
metadata=metadata,
blur_sigma_function=blur_sigma_function,
center_crop=False,
n_jobs=n_jobs)
# Apply mask filtering if needed
if config["mask_dir"]:
print(f"│ ├─ Applying mask filtering...")
masks = utils.load_masks(config["mask_dir"])
chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories, chunk_final_keep_index = utils.filter_for_foreground_masks(
final_clickmaps=chunk_final_clickmaps,
all_clickmaps=chunk_all_clickmaps,
categories=chunk_categories,
masks=masks,
mask_threshold=config["mask_threshold"])
# Save results
print(f"│ ├─ Saving processed maps...")
# Check if parallel saving is enabled (default to True if not specified)
use_parallel_save = config.get("parallel_save", True)
if use_parallel_save:
# Use parallel saving
saved_count = utils.save_clickmaps_parallel(
all_clickmaps=chunk_all_clickmaps,
final_keep_index=chunk_final_keep_index,
output_dir=output_dir,
experiment_name=config["experiment_name"],
image_path=config["image_path"],
n_jobs=n_jobs
)
print(f"│ │ └─ Saved {saved_count} files in parallel")
else:
# Use sequential saving with tqdm
with tqdm(total=len(chunk_final_keep_index), desc="│ │ ├─ Saving files",
position=1, leave=False, colour="cyan") as save_pbar:
for j, img_name in enumerate(chunk_final_keep_index):
if not os.path.exists(os.path.join(config["image_path"], img_name)):
continue
hmp = chunk_all_clickmaps[j]
# Save directly to disk - don't accumulate in memory
np.save(
os.path.join(output_dir, config["experiment_name"], f"{img_name.replace('/', '_')}.npy"),
hmp
)
save_pbar.update(1)
# Merge results (keeping minimal data in memory)
all_final_clickmaps.update(chunk_final_clickmaps)
all_final_keep_index.extend(chunk_final_keep_index)
# Free memory
del chunk_data, chunk_clickmaps, chunk_clickmap_counts
del chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories, chunk_final_keep_index
# Update main progress bar
pbar.update(1)
print(f"│ └─ Chunk {chunk_idx + 1} complete.\n")
# Get median number of clicks from the combined results
percentile_thresh = config["percentile_thresh"]
medians = get_medians(all_final_clickmaps, 'image', thresh=percentile_thresh)
medians.update(get_medians(all_final_clickmaps, 'category', thresh=percentile_thresh))
medians.update(get_medians(all_final_clickmaps, 'all', thresh=percentile_thresh))
medians_json = json.dumps(medians, indent=4)
# Save medians
with open(os.path.join(output_dir, config["processed_medians"]), 'w') as f:
f.write(medians_json)
# Process visualization for display images if needed
if config["display_image_keys"]:
if config["display_image_keys"] == "auto":
sz_dict = {k: len(v) for k, v in all_final_clickmaps.items()}
arg = np.argsort(list(sz_dict.values()))
config["display_image_keys"] = np.asarray(list(sz_dict.keys()))[arg[-10:]]
print("Generating visualizations for display images...")
for img_name in config["display_image_keys"]:
# Find the corresponding heatmap
heatmap_path = os.path.join(output_dir, config["experiment_name"], f"{img_name.replace('/', '_')}.npy")
if not os.path.exists(heatmap_path):
print(f"Heatmap not found for {img_name}")
continue
hmp = np.load(heatmap_path)
img = Image.open(os.path.join(config["image_path"], img_name))
if metadata:
click_match = [k_ for k_ in all_final_clickmaps.keys() if img_name in k_]
if click_match:
metadata_size = metadata[click_match[0]]
img = img.resize(metadata_size)
# Save visualization
f = plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(np.asarray(img))
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(hmp.mean(0))
plt.axis("off")
plt.savefig(os.path.join(image_output_dir, img_name.replace('/', '_')))
plt.close()