forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gptSessionTest.cpp
764 lines (670 loc) · 32.1 KB
/
gptSessionTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TOP_LEVEL_DIR
#error "Define TOP_LEVEL_DIR"
#endif
#include <gtest/gtest.h>
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/common/stlUtils.h"
#include "tensorrt_llm/common/tensor.h"
#include "tensorrt_llm/plugins/api/tllmPlugin.h"
#include "tensorrt_llm/runtime/gptJsonConfig.h"
#include "tensorrt_llm/runtime/gptSession.h"
#include "tensorrt_llm/runtime/tllmLogger.h"
#include "tensorrt_llm/runtime/utils/multiDeviceUtils.h"
#include <algorithm>
#include <filesystem>
#include <mpi.h>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace fs = std::filesystem;
namespace
{
auto const TEST_RESOURCE_PATH = fs::path{TOP_LEVEL_DIR} / "cpp/tests/resources";
auto const ENGINGE_PATH = TEST_RESOURCE_PATH / "models/rt_engine";
auto const DATA_PATH = TEST_RESOURCE_PATH / "data";
auto const GPT_MODEL_DIR = "gpt2";
auto const GPTJ_MODEL_DIR = "gpt-j-6b";
auto const LLAMA_MODEL_DIR = "llama-7b-hf";
// Engines need to be generated using cpp/tests/resources/scripts/build_gpt_engines.py.
auto const FP32_GPT_DIR = "fp32-default";
auto const FP32_GPT_ATTENTION_DIR = "fp32-plugin";
auto const FP16_GPT_DIR = "fp16-default";
auto const FP16_GPT_ATTENTION_DIR = "fp16-plugin";
auto const FP16_GPT_ATTENTION_PACKED_DIR = FP16_GPT_ATTENTION_DIR + std::string("-packed");
auto const FP16_GPT_ATTENTION_PACKED_PAGED_DIR = FP16_GPT_ATTENTION_PACKED_DIR + std::string("-paged");
// Expected outputs need to be generated using cpp/tests/resources/scripts/generate_expected_gpt_output.py.
auto const FP32_RESULT_FILE = "output_tokens_fp32_tp1_pp1.npy";
auto const FP32_PLUGIN_RESULT_FILE = "output_tokens_fp32_plugin_tp1_pp1.npy";
auto const FP16_RESULT_FILE = "output_tokens_fp16_tp1_pp1.npy";
auto const FP16_PLUGIN_RESULT_FILE = "output_tokens_fp16_plugin_tp1_pp1.npy";
auto const FP16_PLUGIN_PACKED_PAGED_RESULT_TP1_PP4_FILE = "output_tokens_fp16_plugin_packed_paged_tp1_pp4.npy";
auto const FP16_PLUGIN_PACKED_PAGED_RESULT_TP4_PP1_FILE = "output_tokens_fp16_plugin_packed_paged_tp4_pp1.npy";
auto const FP16_PLUGIN_PACKED_PAGED_RESULT_TP2_PP2_FILE = "output_tokens_fp16_plugin_packed_paged_tp2_pp2.npy";
auto const FP16_PLUGIN_PACKED_RESULT_FILE = "output_tokens_fp16_plugin_packed_tp1_pp1.npy";
auto const FP16_PLUGIN_PACKED_PAGED_RESULT_FILE = "output_tokens_fp16_plugin_packed_paged_tp1_pp1.npy";
struct ModelIds
{
int endId;
int padId;
};
struct ModelParams
{
char const* baseDir;
ModelIds ids;
};
class ModelSpec
{
public:
ModelSpec(fs::path modelPath, fs::path resultsFile, nvinfer1::DataType dtype)
: mModelPath{std::move(modelPath)}
, mResultsFile{std::move(resultsFile)}
, mDataType{dtype}
, mUseGptAttentionPlugin{false}
, mUsePackedInput{false}
, mUsePagedKvCache{false}
, mDecoderPerRequest{false}
, mPPSize(1)
, mTPSize(1)
{
}
ModelSpec& useGptAttentionPlugin()
{
mUseGptAttentionPlugin = true;
return *this;
}
ModelSpec& usePackedInput()
{
mUsePackedInput = true;
return *this;
}
ModelSpec& usePagedKvCache()
{
mUsePagedKvCache = true;
return *this;
}
ModelSpec& useDecoderPerRequest()
{
mDecoderPerRequest = true;
return *this;
}
ModelSpec& usePipelineParallelism(int ppSize)
{
mPPSize = ppSize;
return *this;
}
ModelSpec& useTensorParallelism(int tpSize)
{
mTPSize = tpSize;
return *this;
}
fs::path mModelPath;
fs::path mResultsFile;
nvinfer1::DataType mDataType;
bool mUseGptAttentionPlugin;
bool mUsePackedInput;
bool mUsePagedKvCache;
bool mDecoderPerRequest;
int mPPSize;
int mTPSize;
};
} // namespace
class SessionTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init)
{
protected:
void SetUp() override
{
mDeviceCount = tc::getDeviceCount();
if (mDeviceCount == 0)
GTEST_SKIP() << "No GPUs found";
mLogger = std::make_shared<TllmLogger>();
initTrtLlmPlugins(mLogger.get());
}
void TearDown() override {}
int mDeviceCount;
std::shared_ptr<nvinfer1::ILogger> mLogger{};
};
namespace
{
void verifyModelConfig(GptModelConfig const& modelConfig, ModelSpec const& modelSpec)
{
ASSERT_EQ(modelSpec.mUseGptAttentionPlugin, modelConfig.useGptAttentionPlugin());
ASSERT_EQ(modelSpec.mUsePackedInput, modelConfig.usePackedInput());
ASSERT_EQ(modelSpec.mUsePagedKvCache, modelConfig.usePagedKvCache());
ASSERT_EQ(modelSpec.mDataType, modelConfig.getDataType());
}
void testGptSession(fs::path const& modelPath, ModelSpec const& modelSpec, ModelIds const modelIds, SizeType beamWidth,
std::initializer_list<int> const& batchSizes, fs::path const& resultsFile,
std::shared_ptr<nvinfer1::ILogger> const& logger, bool cudaGraphMode, SizeType numMicroBatches)
{
ASSERT_TRUE(fs::exists(DATA_PATH));
fs::path input_path = DATA_PATH / "input_tokens.npy";
auto givenInput = tc::Tensor::loadNpy(input_path.string(), tc::MEMORY_CPU);
ASSERT_EQ(givenInput.shape.size(), 2);
ASSERT_GT(givenInput.shape[0], 0);
auto const nbGivenInputs = static_cast<SizeType>(givenInput.shape[0]);
auto expectedOutput = tc::Tensor::loadNpy(resultsFile.string(), tc::MEMORY_CPU);
ASSERT_EQ(expectedOutput.shape.size(), 2);
ASSERT_EQ(givenInput.shape[0] * beamWidth, expectedOutput.shape[0]);
auto const givenInputData = givenInput.getPtr<int>();
auto const expectedOutputData = expectedOutput.getPtr<int>();
ASSERT_TRUE(fs::exists(modelPath));
auto const json = GptJsonConfig::parse(modelPath / "config.json");
auto const modelConfig = json.getModelConfig();
verifyModelConfig(modelConfig, modelSpec);
auto const decoderPerRequest = modelSpec.mDecoderPerRequest;
const int worldSize = modelSpec.mTPSize * modelSpec.mPPSize;
auto const worldConfig = WorldConfig::mpi(*logger, worldSize, modelSpec.mTPSize, modelSpec.mPPSize);
auto enginePath = modelPath / json.engineFilename(worldConfig);
ASSERT_TRUE(fs::exists(enginePath));
auto const maxInputLength = static_cast<SizeType>(givenInput.shape[1]);
auto const maxSeqLength = static_cast<SizeType>(expectedOutput.shape[1]);
ASSERT_LT(maxInputLength, maxSeqLength);
auto const maxNewTokens = maxSeqLength - maxInputLength;
SamplingConfig samplingConfig{beamWidth};
samplingConfig.temperature = std::vector{1.0f};
samplingConfig.minLength = std::vector{1};
samplingConfig.randomSeed = std::vector{42ull};
samplingConfig.topK = std::vector{0};
samplingConfig.topP = std::vector{0.0f};
auto const padId = modelIds.padId;
auto const endId = modelIds.endId;
std::vector<SizeType> givenInputLengths(nbGivenInputs);
for (SizeType i = 0; i < nbGivenInputs; ++i)
{
auto const seqBegin = givenInputData + i * maxInputLength;
auto const it = std::find(seqBegin, seqBegin + maxInputLength, padId);
givenInputLengths[i] = std::distance(seqBegin, it);
}
GptSession session{modelConfig, worldConfig, enginePath.string(), logger};
session.setCudaGraphMode(cudaGraphMode);
EXPECT_EQ(session.getDevice(), worldConfig.getDevice());
// Use bufferManager for copying data to and from the GPU
auto& bufferManager = session.getBufferManager();
auto maxBatchSize = *std::max_element(batchSizes.begin(), batchSizes.end());
session.setup(maxBatchSize, beamWidth, maxSeqLength, decoderPerRequest, std::nullopt, numMicroBatches);
for (auto const batchSize : batchSizes)
{
std::cout << "=== batchSize:" << batchSize << " ===\n";
// use 5 to 12 tokens from input
std::vector<SizeType> inputLenghtsHost(batchSize);
for (SizeType i = 0; i < batchSize; ++i)
{
const int inputIdx = i % nbGivenInputs;
inputLenghtsHost[i] = givenInputLengths[inputIdx];
}
auto inputLenghts = bufferManager.copyFrom(inputLenghtsHost, ITensor::makeShape({batchSize}), MemoryType::kGPU);
// copy inputs and wrap into shared_ptr
GenerationInput::TensorPtr inputIds;
if (modelConfig.usePackedInput())
{
std::vector<SizeType> inputOffsetsHost(batchSize + 1);
tc::stl_utils::inclusiveScan(
inputLenghtsHost.begin(), inputLenghtsHost.end(), inputOffsetsHost.begin() + 1);
auto const totalInputSize = inputOffsetsHost.back();
std::vector<std::int32_t> inputsHost(totalInputSize);
for (SizeType i = 0; i < batchSize; ++i)
{
auto const seqBegin = givenInputData + (i % nbGivenInputs) * maxInputLength;
std::copy(seqBegin, seqBegin + inputLenghtsHost[i], inputsHost.begin() + inputOffsetsHost[i]);
}
inputIds = bufferManager.copyFrom(inputsHost, ITensor::makeShape({1, totalInputSize}), MemoryType::kGPU);
}
else
{
std::vector<std::int32_t> inputsHost(batchSize * maxInputLength, padId);
for (SizeType i = 0; i < batchSize; ++i)
{
auto const seqBegin = givenInputData + (i % nbGivenInputs) * maxInputLength;
std::copy(seqBegin, seqBegin + inputLenghtsHost[i], inputsHost.begin() + i * maxInputLength);
}
inputIds
= bufferManager.copyFrom(inputsHost, ITensor::makeShape({batchSize, maxInputLength}), MemoryType::kGPU);
}
GenerationInput generationInput{
endId, padId, std::move(inputIds), std::move(inputLenghts), modelConfig.usePackedInput()};
// runtime will allocate memory for output if this tensor is empty
GenerationOutput generationOutput{bufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32)};
// repeat the same inputs multiple times for testing idempotency of `generate()`
auto constexpr repetitions = 10;
for (auto r = 0; r < repetitions; ++r)
{
SizeType numSteps = 0;
generationOutput.onTokenGenerated
= [&numSteps, maxNewTokens]([[maybe_unused]] GenerationOutput::TensorPtr const& outputIds,
[[maybe_unused]] SizeType step, bool finished)
{
++numSteps;
EXPECT_TRUE(!finished || numSteps == maxNewTokens);
};
session.generate(generationOutput, generationInput, samplingConfig);
if (worldConfig.isFirstPipelineParallelRank())
{
EXPECT_EQ(numSteps, maxNewTokens);
// compare outputs
auto const& outputIds = generationOutput.ids;
auto const& outputDims = outputIds->getShape();
EXPECT_EQ(outputDims.nbDims, 3);
EXPECT_EQ(outputDims.d[0], batchSize) << "r: " << r;
EXPECT_EQ(outputDims.d[1], beamWidth) << "r: " << r;
EXPECT_EQ(outputDims.d[2], maxSeqLength) << "r: " << r;
auto outputHost = bufferManager.copyFrom(*outputIds, MemoryType::kCPU);
auto output = bufferCast<std::int32_t>(*outputHost);
bufferManager.getStream().synchronize();
for (auto b = 0; b < batchSize; ++b)
{
for (auto beam = 0; beam < beamWidth; ++beam)
{
bool anyMismatch = false;
for (auto i = 0; i < maxSeqLength; ++i)
{
auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength);
auto const expectIndex
= tc::flat_index2((b % nbGivenInputs * beamWidth + beam), i, maxSeqLength);
EXPECT_EQ(output[outputIndex], expectedOutputData[expectIndex])
<< " b: " << b << " beam: " << beam << " i: " << i;
anyMismatch |= (output[outputIndex] != expectedOutputData[expectIndex]);
}
ASSERT_FALSE(anyMismatch) << "batchSize: " << batchSize << ", r: " << r << ", b: " << b;
}
}
// make sure to recreate the outputs in the next repetition
outputIds->release();
}
}
}
free(givenInputData);
free(expectedOutputData);
}
auto constexpr kBatchSizes = {1, 8};
using ParamType = std::tuple<ModelParams, ModelSpec, SizeType, bool, SizeType>;
std::string generateTestName(const testing::TestParamInfo<ParamType>& info)
{
auto const modelSpec = std::get<1>(info.param);
std::string name{modelSpec.mDataType == nvinfer1::DataType::kFLOAT ? "Float" : "Half"};
auto const beamWidth = std::get<2>(info.param);
name.append(beamWidth == 1 ? "Sampling" : "BeamWidth" + std::to_string(beamWidth));
if (modelSpec.mUseGptAttentionPlugin)
name.append("GptAttentionPlugin");
if (modelSpec.mUsePackedInput)
name.append("Packed");
if (modelSpec.mUsePagedKvCache)
name.append("PagedKvCache");
if (modelSpec.mDecoderPerRequest)
name.append("DecoderBatch");
if (std::get<3>(info.param))
name.append("CudaGraph");
auto const numMicroBatches = std::get<4>(info.param);
if (numMicroBatches > 1)
name.append("MicroBatch" + std::to_string(numMicroBatches));
if (modelSpec.mPPSize > 1)
name.append("PP" + std::to_string(modelSpec.mPPSize));
if (modelSpec.mTPSize > 1)
name.append("TP" + std::to_string(modelSpec.mTPSize));
return name;
}
} // namespace
class ParamTest : public SessionTest, public ::testing::WithParamInterface<ParamType>
{
};
TEST_P(ParamTest, Test)
{
auto const modelParams = std::get<0>(GetParam());
auto const modelDir = modelParams.baseDir;
auto const modelIds = modelParams.ids;
auto const modelSpec = std::get<1>(GetParam());
SizeType const beamWidth{std::get<2>(GetParam())};
auto const resultsPath
= DATA_PATH / modelDir / ((beamWidth == 1) ? "sampling" : "beam_search_" + std::to_string(beamWidth));
fs::path const resultsFile{resultsPath / modelSpec.mResultsFile};
auto const numMicroBatches = std::get<4>(GetParam());
if (!modelSpec.mUseGptAttentionPlugin && beamWidth > 1)
GTEST_SKIP();
if (!WorldConfig::validConfig(*mLogger, modelSpec.mTPSize, modelSpec.mPPSize))
{
GTEST_SKIP() << "Model's world size " << modelSpec.mPPSize * modelSpec.mTPSize
<< " is not equal to the system world size";
}
std::ostringstream gpuSizePath;
gpuSizePath << "tp" << modelSpec.mTPSize << "-pp" << modelSpec.mPPSize << "-gpu";
auto const modelPath{ENGINGE_PATH / modelDir / modelSpec.mModelPath / gpuSizePath.str()};
auto const cudaGraphMode = std::get<3>(GetParam());
testGptSession(
modelPath, modelSpec, modelIds, beamWidth, kBatchSizes, resultsFile, mLogger, cudaGraphMode, numMicroBatches);
}
INSTANTIATE_TEST_SUITE_P(GptSessionTest, ParamTest,
testing::Combine(testing::Values(ModelParams{GPT_MODEL_DIR, {50256, 50256}}),
testing::Values(
// single decoder
ModelSpec{FP32_GPT_DIR, FP32_RESULT_FILE, nvinfer1::DataType::kFLOAT},
ModelSpec{FP32_GPT_ATTENTION_DIR, FP32_PLUGIN_RESULT_FILE, nvinfer1::DataType::kFLOAT}
.useGptAttentionPlugin(),
ModelSpec{FP16_GPT_DIR, FP16_RESULT_FILE, nvinfer1::DataType::kHALF},
ModelSpec{FP16_GPT_ATTENTION_DIR, FP16_PLUGIN_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin(),
ModelSpec{FP16_GPT_ATTENTION_PACKED_DIR, FP16_PLUGIN_PACKED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput(),
ModelSpec{
FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache(),
// decoderBatch
ModelSpec{FP32_GPT_DIR, FP32_RESULT_FILE, nvinfer1::DataType::kFLOAT}.useDecoderPerRequest(),
ModelSpec{FP32_GPT_ATTENTION_DIR, FP32_PLUGIN_RESULT_FILE, nvinfer1::DataType::kFLOAT}
.useGptAttentionPlugin()
.useDecoderPerRequest(),
ModelSpec{FP16_GPT_DIR, FP16_RESULT_FILE, nvinfer1::DataType::kHALF}.useDecoderPerRequest(),
ModelSpec{FP16_GPT_ATTENTION_DIR, FP16_PLUGIN_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.useDecoderPerRequest(),
ModelSpec{FP16_GPT_ATTENTION_PACKED_DIR, FP16_PLUGIN_PACKED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.useDecoderPerRequest(),
ModelSpec{
FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache()
.useDecoderPerRequest()
),
testing::Values(1, 2), testing::Values(false, true), testing::Values(1, 3)),
generateTestName);
INSTANTIATE_TEST_SUITE_P(GptjSessionTest, ParamTest,
testing::Combine(testing::Values(ModelParams{GPTJ_MODEL_DIR, {50256, 50256}}),
testing::Values(
// single decoder
ModelSpec{FP16_GPT_ATTENTION_DIR, FP16_PLUGIN_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin(),
ModelSpec{FP16_GPT_ATTENTION_PACKED_DIR, FP16_PLUGIN_PACKED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput(),
ModelSpec{
FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache(),
// decoderBatch
ModelSpec{FP16_GPT_ATTENTION_DIR, FP16_PLUGIN_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.useDecoderPerRequest(),
ModelSpec{FP16_GPT_ATTENTION_PACKED_DIR, FP16_PLUGIN_PACKED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.useDecoderPerRequest(),
ModelSpec{
FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache()
.useDecoderPerRequest()
),
testing::Values(1, 2), testing::Values(false), testing::Values(1)),
generateTestName);
INSTANTIATE_TEST_SUITE_P(LlamaSessionTest, ParamTest,
testing::Combine(testing::Values(ModelParams{LLAMA_MODEL_DIR, {2, 2}}),
testing::Values(
// single decoder
ModelSpec{
FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache(),
// decoderBatch
ModelSpec{
FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_FILE, nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache()
.useDecoderPerRequest(),
ModelSpec{FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_TP1_PP4_FILE,
nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache()
.useDecoderPerRequest()
.usePipelineParallelism(4),
ModelSpec{FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_TP4_PP1_FILE,
nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache()
.useDecoderPerRequest()
.useTensorParallelism(4),
ModelSpec{FP16_GPT_ATTENTION_PACKED_PAGED_DIR, FP16_PLUGIN_PACKED_PAGED_RESULT_TP2_PP2_FILE,
nvinfer1::DataType::kHALF}
.useGptAttentionPlugin()
.usePackedInput()
.usePagedKvCache()
.useDecoderPerRequest()
.usePipelineParallelism(2)
.useTensorParallelism(2)
),
testing::Values(1, 2), testing::Values(false), testing::Values(1)),
generateTestName);
class LlamaSessionOnDemandTest : public SessionTest
{
};
TEST_F(LlamaSessionOnDemandTest, SamplingFP16WithAttentionPlugin)
{
GTEST_SKIP() << "Run only on demand";
auto const modelDir = "llama_7bf";
auto const engineDir = "llama_7bf_outputs_tp1";
auto const modelPath{ENGINGE_PATH / modelDir / engineDir};
SizeType constexpr beamWidth{1};
fs::path resultsFile{DATA_PATH / modelDir / FP16_RESULT_FILE};
auto const batchSizes = {8};
auto constexpr dtype = nvinfer1::DataType::kHALF;
auto const modelSpec = ModelSpec{"", "", dtype}.useGptAttentionPlugin();
auto const modeIds = ModelIds{2, 2};
testGptSession(modelPath, modelSpec, modeIds, beamWidth, batchSizes, resultsFile, mLogger, false, 1);
}
TEST_F(LlamaSessionOnDemandTest, SamplingFP16AttentionPluginDecoderBatch)
{
GTEST_SKIP() << "Run only on demand";
auto const modelDir = "llamav2";
auto const modelPath{ENGINGE_PATH / modelDir};
SizeType constexpr beamWidth{1};
fs::path resultsFile{DATA_PATH / modelDir / FP16_RESULT_FILE};
auto const batchSizes = {8};
auto constexpr dtype = nvinfer1::DataType::kHALF;
auto const modelSpec = ModelSpec{"", "", dtype}.useGptAttentionPlugin().usePackedInput().useDecoderPerRequest();
auto const modeIds = ModelIds{2, 2};
testGptSession(modelPath, modelSpec, modeIds, beamWidth, batchSizes, resultsFile, mLogger, false, 1);
}
class Glm6bSessionTest : public SessionTest
{
};
// Engines need to be generated using cpp/tests/resources/scripts/build_gpt_engines.py.
// Expected outputs need to be generated using cpp/tests/resources/scripts/generate_expected_chatglm6b_output.py.
namespace
{
// TODO: consolidate this function with testGptSession
void testGlm6bSession(fs::path const& modelPath, ModelSpec const& modelSpec, ModelIds const modelIds,
SizeType beamWidth, std::initializer_list<int> const& batchSizes, std::shared_ptr<nvinfer1::ILogger> const& logger,
bool cudaGraphMode, SizeType numMicroBatches)
{
ASSERT_TRUE(fs::exists(DATA_PATH / "chatglm6b"));
const int batchSize = *batchSizes.begin();
std::string fileNameSuffix
= std::string("-BS") + std::to_string(batchSize) + "-BM" + std::to_string(beamWidth) + std::string(".npy");
fs::path givenInputPath = DATA_PATH / "chatglm6b" / (std::string("inputId") + fileNameSuffix);
auto givenInput = tc::Tensor::loadNpy(givenInputPath.string(), tc::MEMORY_CPU);
ASSERT_EQ(givenInput.shape.size(), 2);
ASSERT_GT(givenInput.shape[0], 0);
auto const nbGivenInputs = static_cast<SizeType>(givenInput.shape[0]);
fs::path expectedOutputPath = DATA_PATH / "chatglm6b" / (std::string("outputId") + fileNameSuffix);
auto expectedOutput = tc::Tensor::loadNpy(expectedOutputPath.string(), tc::MEMORY_CPU);
ASSERT_EQ(expectedOutput.shape.size(), 3);
ASSERT_EQ(batchSize, expectedOutput.shape[0]);
ASSERT_EQ(beamWidth, expectedOutput.shape[1]);
auto const givenInputData = givenInput.getPtr<int>();
auto const expectedOutputData = expectedOutput.getPtr<int>();
ASSERT_TRUE(fs::exists(modelPath));
auto const json = GptJsonConfig::parse(modelPath / "config.json");
auto const modelConfig = json.getModelConfig();
EXPECT_EQ(modelConfig.getModelVariant(), GptModelConfig::ModelVariant::kGlm);
verifyModelConfig(modelConfig, modelSpec);
auto const decoderPerRequest = modelSpec.mDecoderPerRequest;
const int worldSize = modelSpec.mTPSize * modelSpec.mPPSize;
auto const worldConfig = WorldConfig::mpi(*logger, worldSize, modelSpec.mTPSize, modelSpec.mPPSize);
auto enginePath = modelPath / json.engineFilename(worldConfig);
ASSERT_TRUE(fs::exists(enginePath));
auto const maxInputLength = static_cast<SizeType>(givenInput.shape[1]);
auto const maxNewTokens = 1024;
auto const maxSeqLengthGroundTruth = static_cast<SizeType>(expectedOutput.shape[2]);
auto const maxSeqLength = maxInputLength + maxNewTokens;
SamplingConfig samplingConfig{beamWidth};
samplingConfig.temperature = std::vector{1.0f};
samplingConfig.minLength = std::vector{1};
samplingConfig.randomSeed = std::vector{1ull};
samplingConfig.topK = std::vector{1};
samplingConfig.topP = std::vector{1.0f};
auto const padId = modelIds.padId;
auto const endId = modelIds.endId;
std::vector<SizeType> givenInputLengths(nbGivenInputs);
for (SizeType i = 0; i < nbGivenInputs; ++i)
{
auto const seqBegin = givenInputData + i * maxInputLength;
auto const it = std::find(seqBegin, seqBegin + maxInputLength, padId);
givenInputLengths[i] = std::distance(seqBegin, it);
}
GptSession session{modelConfig, worldConfig, enginePath.string(), logger};
session.setCudaGraphMode(cudaGraphMode);
EXPECT_EQ(session.getDevice(), worldConfig.getDevice());
// Use bufferManager for copying data to and from the GPU
auto& bufferManager = session.getBufferManager();
auto maxBatchSize = *std::max_element(batchSizes.begin(), batchSizes.end());
session.setup(maxBatchSize, beamWidth, maxSeqLength, decoderPerRequest, std::nullopt, numMicroBatches);
for (auto const batchSize : batchSizes)
{
std::cout << "=== batchSize:" << batchSize << " ===\n";
std::vector<SizeType> inputLenghtsHost(batchSize);
for (SizeType i = 0; i < batchSize; ++i)
{
const int inputIdx = i % nbGivenInputs;
inputLenghtsHost[i] = givenInputLengths[inputIdx];
}
auto inputLenghts = bufferManager.copyFrom(inputLenghtsHost, ITensor::makeShape({batchSize}), MemoryType::kGPU);
// copy inputs and wrap into shared_ptr
GenerationInput::TensorPtr inputIds;
if (modelConfig.usePackedInput())
{
std::vector<SizeType> inputOffsetsHost(batchSize + 1);
tc::stl_utils::inclusiveScan(
inputLenghtsHost.begin(), inputLenghtsHost.end(), inputOffsetsHost.begin() + 1);
auto const totalInputSize = inputOffsetsHost.back();
std::vector<std::int32_t> inputsHost(totalInputSize);
for (SizeType i = 0; i < batchSize; ++i)
{
auto const seqBegin = givenInputData + (i % nbGivenInputs) * maxInputLength;
std::copy(seqBegin, seqBegin + inputLenghtsHost[i], inputsHost.begin() + inputOffsetsHost[i]);
}
inputIds = bufferManager.copyFrom(inputsHost, ITensor::makeShape({1, totalInputSize}), MemoryType::kGPU);
}
else
{
std::vector<std::int32_t> inputsHost(batchSize * maxInputLength, padId);
for (SizeType i = 0; i < batchSize; ++i)
{
auto const seqBegin = givenInputData + (i % nbGivenInputs) * maxInputLength;
std::copy(seqBegin, seqBegin + inputLenghtsHost[i], inputsHost.begin() + i * maxInputLength);
}
inputIds
= bufferManager.copyFrom(inputsHost, ITensor::makeShape({batchSize, maxInputLength}), MemoryType::kGPU);
}
GenerationInput generationInput{
endId, padId, std::move(inputIds), std::move(inputLenghts), modelConfig.usePackedInput()};
// runtime will allocate memory for output if this tensor is empty
GenerationOutput generationOutput{bufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32)};
// repeat the same inputs multiple times for testing idempotency of `generate()`
auto constexpr repetitions = 10;
for (auto r = 0; r < repetitions; ++r)
{
SizeType numSteps = 0;
/*
generationOutput.onTokenGenerated
= [&numSteps, maxNewTokens]([[maybe_unused]] GenerationOutput::TensorPtr const& outputIds,
[[maybe_unused]] SizeType step, bool finished)
{
++numSteps;
EXPECT_TRUE(!finished || numSteps == maxNewTokens);
};
*/
session.generate(generationOutput, generationInput, samplingConfig);
// EXPECT_EQ(numSteps, maxNewTokens);
// compare outputs
auto const& outputIds = generationOutput.ids;
auto const& outputDims = outputIds->getShape();
EXPECT_EQ(outputDims.nbDims, 3);
EXPECT_EQ(outputDims.d[0], batchSize) << "r: " << r;
EXPECT_EQ(outputDims.d[1], beamWidth) << "r: " << r;
// EXPECT_EQ(outputDims.d[2], maxSeqLength) << "r: " << r;
auto outputHost = bufferManager.copyFrom(*outputIds, MemoryType::kCPU);
auto output = bufferCast<std::int32_t>(*outputHost);
bufferManager.getStream().synchronize();
for (auto b = 0; b < batchSize; ++b)
{
for (auto beam = 0; beam < beamWidth; ++beam)
{
bool anyMismatch = false;
for (auto i = 0; i < maxSeqLength; ++i)
{
int outputIndex = b * beamWidth * maxSeqLength + beam * maxSeqLength + i;
int expectIndex = b * beamWidth * maxSeqLengthGroundTruth + beam * maxSeqLengthGroundTruth + i;
/*
printf("[%2d,%2d,%4d]->[%4d,%4d,%s][out=%6d,ref=%6d] %s\n", \
b, beam, i, outputIndex, expectIndex, \
((output[outputIndex] == expectedOutputData[expectIndex]) ? "Y" : "N"), \
output[outputIndex], expectedOutputData[expectIndex], \
(output[outputIndex] == endId ? "<" : ""));
*/
EXPECT_EQ(output[outputIndex], expectedOutputData[expectIndex])
<< " b: " << b << " beam: " << beam << " i: " << i;
anyMismatch |= (output[outputIndex] != expectedOutputData[expectIndex]);
if (output[outputIndex] == endId) // exit early
break;
}
ASSERT_FALSE(anyMismatch) << "batchSize: " << batchSize << ", r: " << r << ", b: " << b;
}
}
outputIds->release();
}
}
free(givenInputData);
free(expectedOutputData);
}
} // namespace
TEST_F(Glm6bSessionTest, SamplingFP16WithGptAttentionPluginBS1BM1)
{
auto const modelPath{ENGINGE_PATH / "chatglm6b"};
auto const batchSizes = {1};
auto constexpr dtype = nvinfer1::DataType::kHALF;
auto const modelSpec = ModelSpec{"", "", dtype}.useGptAttentionPlugin();
auto const modeIds = ModelIds{130005, 130005};
testGlm6bSession(modelPath, modelSpec, modeIds, 1, batchSizes, mLogger, false, 1);
}
TEST_F(Glm6bSessionTest, SamplingFP16WithGptAttentionPluginBS2BM1)
{
auto const modelPath{ENGINGE_PATH / "chatglm6b"};
auto const batchSizes = {2};
auto constexpr dtype = nvinfer1::DataType::kHALF;
auto const modelSpec = ModelSpec{"", "", dtype}.useGptAttentionPlugin();
auto const modeIds = ModelIds{130005, 130005};
testGlm6bSession(modelPath, modelSpec, modeIds, 1, batchSizes, mLogger, false, 1);
}