-
Notifications
You must be signed in to change notification settings - Fork 162
/
atss_R_50_FPN_1x.yaml
36 lines (36 loc) · 960 Bytes
/
atss_R_50_FPN_1x.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50"
RPN_ONLY: True
ATSS_ON: True
BACKBONE:
CONV_BODY: "R-50-FPN-RETINANET"
RESNETS:
BACKBONE_OUT_CHANNELS: 256
RETINANET:
USE_C5: False
ATSS:
ANCHOR_SIZES: (64, 128, 256, 512, 1024) # 8S
ASPECT_RATIOS: (1.0,)
SCALES_PER_OCTAVE: 1
USE_DCN_IN_TOWER: False
POSITIVE_TYPE: 'ATSS' # how to select positves: ATSS (Ours) , SSC (FCOS), IoU (RetinaNet)
TOPK: 9 # topk for selecting candidate positive samples from each level
REGRESSION_TYPE: 'BOX' # regressing from a 'BOX' or a 'POINT'
DATASETS:
TRAIN: ("coco_2017_train",)
TEST: ("coco_2017_val",)
INPUT:
MIN_SIZE_TRAIN: (800,)
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
MAX_SIZE_TEST: 1333
DATALOADER:
SIZE_DIVISIBILITY: 32
SOLVER:
BASE_LR: 0.01
WEIGHT_DECAY: 0.0001
STEPS: (60000, 80000)
MAX_ITER: 90000
IMS_PER_BATCH: 16
WARMUP_METHOD: "constant"