-
Notifications
You must be signed in to change notification settings - Fork 505
/
schedule_batch.py
1087 lines (889 loc) · 38.7 KB
/
schedule_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
"""
Store information about requests and batches.
The following is the flow of data structures for a batch:
ScheduleBatch -> ModelWorkerBatch -> ForwardBatch
- ScheduleBatch is managed by `scheduler.py::Scheduler`.
It contains high-level scheduling data. Most of the data is on the CPU.
- ModelWorkerBatch is managed by `tp_worker.py::TpModelWorker`.
It is a subset of `ScheduleBatch` that only contains data related to the model forward on GPU.
It will be transformed from CPU scheduler to GPU model runner.
- ForwardBatch is managed by `model_runner.py::ModelRunner`.
It contains low-level tensor data. Most of the data consists of GPU tensors.
"""
import dataclasses
import logging
from typing import List, Optional, Tuple, Union
import torch
from sglang.global_config import global_config
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.constrained.base_grammar_backend import BaseGrammarObject
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
from sglang.srt.model_executor.forward_batch_info import ForwardMode
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
from sglang.srt.sampling.sampling_params import SamplingParams
from sglang.srt.server_args import ServerArgs
INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
# Put some global args for easy access
global_server_args_dict = {
"attention_backend": ServerArgs.attention_backend,
"sampling_backend": ServerArgs.sampling_backend,
"triton_attention_reduce_in_fp32": ServerArgs.triton_attention_reduce_in_fp32,
"disable_mla": ServerArgs.disable_mla,
"torchao_config": ServerArgs.torchao_config,
"disable_nan_detection": ServerArgs.disable_nan_detection,
}
logger = logging.getLogger(__name__)
class BaseFinishReason:
def __init__(self, is_error: bool = False):
self.is_error = is_error
def to_json(self):
raise NotImplementedError()
class FINISH_MATCHED_TOKEN(BaseFinishReason):
def __init__(self, matched: Union[int, List[int]]):
super().__init__()
self.matched = matched
def to_json(self):
return {
"type": "stop", # to match OpenAI API's return value
"matched": self.matched,
}
class FINISH_MATCHED_STR(BaseFinishReason):
def __init__(self, matched: str):
super().__init__()
self.matched = matched
def to_json(self):
return {
"type": "stop", # to match OpenAI API's return value
"matched": self.matched,
}
class FINISH_LENGTH(BaseFinishReason):
def __init__(self, length: int):
super().__init__()
self.length = length
def to_json(self):
return {
"type": "length", # to match OpenAI API's return value
"length": self.length,
}
class FINISH_ABORT(BaseFinishReason):
def __init__(self, message="Unknown error"):
super().__init__(is_error=True)
self.message = message
def to_json(self):
return {
"type": "abort",
"message": self.message,
}
@dataclasses.dataclass
class ImageInputs:
"""The image related inputs."""
pixel_values: torch.Tensor
image_hashes: Optional[list] = None
image_sizes: Optional[list] = None
image_offsets: Optional[list] = None
pad_values: Optional[list] = None
modalities: Optional[list] = None
num_image_tokens: Optional[int] = None
image_embeds: Optional[List[torch.Tensor]] = None
aspect_ratio_ids: Optional[List[torch.Tensor]] = None
aspect_ratio_mask: Optional[List[torch.Tensor]] = None
# QWen2-VL related
image_grid_thws: List[Tuple[int, int, int]] = None
mrope_position_delta: Optional[torch.Tensor] = None
@staticmethod
def from_dict(obj, vocab_size):
# Use image hash as fake token_ids, which is then used for prefix matching
ret = ImageInputs(
pixel_values=obj["pixel_values"],
image_hashes=hash(tuple(obj["image_hashes"])),
)
image_hash = ret.image_hashes
ret.pad_values = [
(image_hash) % vocab_size,
(image_hash >> 16) % vocab_size,
(image_hash >> 32) % vocab_size,
(image_hash >> 64) % vocab_size,
]
optional_args = [
"image_sizes",
"modalities",
"aspect_ratio_ids",
"aspect_ratio_mask",
"image_grid_thws",
]
for arg in optional_args:
if arg in obj:
setattr(ret, arg, obj[arg])
return ret
class Req:
"""The input and output status of a request."""
def __init__(
self,
rid: str,
origin_input_text: str,
origin_input_ids: Tuple[int],
sampling_params: SamplingParams,
lora_path: Optional[str] = None,
):
# Input and output info
self.rid = rid
self.origin_input_text = origin_input_text
self.origin_input_ids_unpadded = origin_input_ids # Before image padding
self.origin_input_ids = origin_input_ids
self.output_ids = [] # Each decode stage's output ids
self.fill_ids = None # fill_ids = origin_input_ids + output_ids
self.sampling_params = sampling_params
self.lora_path = lora_path
# Memory info
self.req_pool_idx = None
# Check finish
self.tokenizer = None
self.finished_reason = None
self.stream = False
# For incremental decoding
# ----- | --------- read_ids -------|
# ----- | surr_ids |
# xxxxx | xxxxxxxxxxx | xxxxxxxxxxx |
# ----- ^ ----------- ^ ----------- ^
# ----- 1 ----------- 2 ----------- 3
# 1: surr_offset
# 2: read_offset
# 3: last token
self.vid = 0 # version id to sync decode status with in detokenizer_manager
self.decoded_text = ""
self.surr_offset = None # Surrounding offset to defeat the cleanup algorithm
self.read_offset = None
# The number of decoded tokens for token usage report. Note that
# this does not include the jump forward tokens.
self.completion_tokens_wo_jump_forward = 0
# For multimodal inputs
self.image_inputs: Optional[ImageInputs] = None
# Prefix info
self.prefix_indices = []
self.extend_input_len = 0
self.last_node = None
self.is_being_chunked = 0
# For retraction
self.is_retracted = False
# Logprobs (arguments)
self.return_logprob = False
self.logprob_start_len = 0
self.top_logprobs_num = 0
# Logprobs (return value)
self.normalized_prompt_logprob = None
self.input_token_logprobs = None
self.input_top_logprobs = None
self.output_token_logprobs = []
self.output_top_logprobs = []
# Logprobs (internal values)
# The tokens is prefilled but need to be considered as decode tokens
# and should be updated for the decode logprobs
self.last_update_decode_tokens = 0
# The relative logprob_start_len in an extend batch
self.extend_logprob_start_len = 0
# Embedding (return values)
self.embedding = None
# Constrained decoding
self.grammar: Optional[BaseGrammarObject] = None
# The number of cached tokens, that were already cached in the KV cache
self.cached_tokens = 0
# whether request reached finished condition
def finished(self) -> bool:
return self.finished_reason is not None
def init_next_round_input(self, tree_cache: Optional[BasePrefixCache] = None):
self.fill_ids = self.origin_input_ids + self.output_ids
if tree_cache is not None:
self.prefix_indices, self.last_node = tree_cache.match_prefix(
rid=self.rid, key=self.adjust_max_prefix_ids()
)
self.extend_input_len = len(self.fill_ids) - len(self.prefix_indices)
def adjust_max_prefix_ids(self):
self.fill_ids = self.origin_input_ids + self.output_ids
input_len = len(self.fill_ids)
# FIXME: To work around some bugs in logprob computation, we need to ensure each
# request has at least one token. Later, we can relax this requirement and use `input_len`.
max_prefix_len = input_len - 1
if self.sampling_params.max_new_tokens > 0:
# Need at least one token to compute logits
max_prefix_len = min(max_prefix_len, input_len - 1)
if self.return_logprob:
if self.normalized_prompt_logprob is None:
# Need at least two tokens to compute normalized logprob
max_prefix_len = min(max_prefix_len, input_len - 2)
max_prefix_len = min(max_prefix_len, self.logprob_start_len)
max_prefix_len = max(max_prefix_len, 0)
return self.fill_ids[:max_prefix_len]
# Based on https://github.com/vllm-project/vllm/blob/7a64d24aad69e4d2548aa0bf528d9fe63428ab01/vllm/transformers_utils/detokenizer.py#L194-L313
def init_incremental_detokenize(self):
first_iter = self.surr_offset is None or self.read_offset is None
if first_iter:
self.read_offset = len(self.origin_input_ids_unpadded)
self.surr_offset = max(
self.read_offset - INIT_INCREMENTAL_DETOKENIZATION_OFFSET, 0
)
all_ids = self.origin_input_ids_unpadded + self.output_ids
return all_ids[self.surr_offset :], self.read_offset - self.surr_offset
def get_next_inc_detokenization(self):
if self.tokenizer is None:
return False, ""
read_ids, read_offset = self.init_incremental_detokenize()
surr_ids = read_ids[:read_offset]
surr_text = self.tokenizer.decode(
surr_ids,
skip_special_tokens=self.sampling_params.skip_special_tokens,
spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
)
new_text = self.tokenizer.decode(
read_ids,
skip_special_tokens=self.sampling_params.skip_special_tokens,
spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
)
if len(new_text) > len(surr_text) and not new_text.endswith("�"):
return True, new_text[len(surr_text) :]
return False, ""
def check_finished(self):
if self.finished():
return
if len(self.output_ids) >= self.sampling_params.max_new_tokens:
self.finished_reason = FINISH_LENGTH(
length=self.sampling_params.max_new_tokens
)
return
last_token_id = self.output_ids[-1]
matched_eos = False
# Check stop token ids
if self.sampling_params.stop_token_ids:
matched_eos = last_token_id in self.sampling_params.stop_token_ids
if self.tokenizer is not None:
matched_eos |= last_token_id == self.tokenizer.eos_token_id
if self.tokenizer.additional_stop_token_ids:
matched_eos |= last_token_id in self.tokenizer.additional_stop_token_ids
if matched_eos and not self.sampling_params.ignore_eos:
self.finished_reason = FINISH_MATCHED_TOKEN(matched=last_token_id)
return
# Check stop strings
if len(self.sampling_params.stop_strs) > 0:
tail_str = self.tokenizer.decode(
self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
)
for stop_str in self.sampling_params.stop_strs:
if stop_str in tail_str or stop_str in self.decoded_text:
self.finished_reason = FINISH_MATCHED_STR(matched=stop_str)
return
def jump_forward_and_retokenize(self, jump_forward_str, next_state):
if self.origin_input_text is None:
# Recovering text can only use unpadded ids
self.origin_input_text = self.tokenizer.decode(
self.origin_input_ids_unpadded
)
all_text = self.origin_input_text + self.decoded_text + jump_forward_str
all_ids = self.tokenizer.encode(all_text)
if not all_ids:
logger.warning("Encoded all_text resulted in empty all_ids")
return False
prompt_tokens = len(self.origin_input_ids_unpadded)
if prompt_tokens > len(all_ids):
logger.warning("prompt_tokens is larger than encoded all_ids")
return False
if all_ids[prompt_tokens - 1] != self.origin_input_ids_unpadded[-1]:
# TODO(lsyin): fix token fusion
logger.warning(
"Token fusion between input and output, try to avoid this by removing the space at the end of the input."
)
return False
old_output_ids = self.output_ids
self.output_ids = all_ids[prompt_tokens:]
self.decoded_text = self.decoded_text + jump_forward_str
self.surr_offset = prompt_tokens
self.read_offset = len(all_ids)
# NOTE: A trick to reduce the surrouding tokens decoding overhead
for i in range(0, INIT_INCREMENTAL_DETOKENIZATION_OFFSET):
surr_text_ = self.tokenizer.decode(
all_ids[self.read_offset - i : self.read_offset]
)
if not surr_text_.endswith("�"):
self.surr_offset = self.read_offset - i
break
# update the inner state of the grammar
self.grammar.jump_and_retokenize(old_output_ids, self.output_ids, next_state)
if self.return_logprob:
# For fast-forward part's logprobs
k = 0
for i, old_id in enumerate(old_output_ids):
if old_id == self.output_ids[i]:
k = k + 1
else:
break
self.output_token_logprobs = self.output_token_logprobs[:k]
self.output_top_logprobs = self.output_top_logprobs[:k]
self.logprob_start_len = prompt_tokens + k
self.last_update_decode_tokens = len(self.output_ids) - k
return True
def __repr__(self):
return f"rid(n={self.rid}, " f"input_ids={self.origin_input_ids}, "
bid = 0
@dataclasses.dataclass
class ScheduleBatch:
"""Store all inforamtion of a batch."""
# Request, memory pool, and cache
reqs: List[Req]
req_to_token_pool: ReqToTokenPool = None
token_to_kv_pool: BaseTokenToKVPool = None
tree_cache: BasePrefixCache = None
# For utility
model_config: ModelConfig = None
forward_mode: ForwardMode = None
sampling_info: SamplingBatchInfo = None
# Batched arguments to model runner
input_ids: torch.Tensor = None
req_pool_indices: torch.Tensor = None
seq_lens: torch.Tensor = None
# The output locations of the KV cache
out_cache_loc: torch.Tensor = None
output_ids: torch.Tensor = None
# The sum of all sequence lengths
seq_lens_sum: int = None
# For processing logprobs
return_logprob: bool = False
top_logprobs_nums: Optional[List[int]] = None
# For extend and mixed chunekd prefill
prefix_lens: List[int] = None
extend_lens: List[int] = None
extend_num_tokens: int = None
decoding_reqs: List[Req] = None
# For encoder-decoder
encoder_cached: Optional[List[bool]] = None
encoder_lens: Optional[torch.Tensor] = None
encoder_lens_cpu: Optional[List[int]] = None
encoder_out_cache_loc: Optional[torch.Tensor] = None
# Stream
has_stream: bool = False
# Has grammar
has_grammar: bool = False
# device
device: str = "cuda"
@classmethod
def init_new(
cls,
reqs: List[Req],
req_to_token_pool,
token_to_kv_pool,
tree_cache,
model_config,
):
return cls(
reqs=reqs,
req_to_token_pool=req_to_token_pool,
token_to_kv_pool=token_to_kv_pool,
tree_cache=tree_cache,
model_config=model_config,
return_logprob=any(req.return_logprob for req in reqs),
has_stream=any(req.stream for req in reqs),
has_grammar=any(req.grammar for req in reqs),
device=req_to_token_pool.device,
)
def batch_size(self):
return len(self.reqs)
def is_empty(self):
return len(self.reqs) == 0
def alloc_req_slots(self, num_reqs):
req_pool_indices = self.req_to_token_pool.alloc(num_reqs)
if req_pool_indices is None:
raise RuntimeError(
"Out of memory. "
"Please set a smaller number for `--max-running-requests`."
)
return req_pool_indices
def alloc_token_slots(self, num_tokens: int):
out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)
if out_cache_loc is None:
if self.tree_cache is not None:
self.tree_cache.evict(num_tokens, self.token_to_kv_pool.free)
out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)
if out_cache_loc is None:
phase_str = "Prefill" if self.forward_mode.is_extend() else "Decode"
logger.error(
f"{phase_str} out of memory. Try to lower your batch size.\n"
f"Try to allocate {num_tokens} tokens.\n"
f"Avaliable tokens: {self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()}\n"
)
if self.tree_cache is not None:
self.tree_cache.pretty_print()
exit(1)
return out_cache_loc
def prepare_encoder_info_extend(self, input_ids: List[int], seq_lens: List[int]):
self.encoder_lens_cpu = []
self.encoder_cached = []
for req in self.reqs:
im = req.image_inputs
if im is None or im.num_image_tokens is None:
# No image input
self.encoder_lens_cpu.append(0)
self.encoder_cached.append(True)
else:
self.encoder_lens_cpu.append(im.num_image_tokens)
self.encoder_cached.append(
self.forward_mode.is_decode()
or len(req.prefix_indices) >= im.num_image_tokens
)
self.encoder_lens = torch.tensor(self.encoder_lens_cpu, dtype=torch.int32).to(
self.device, non_blocking=True
)
# Strip encoder infos
pt = 0
decoder_out_cache_loc = []
encoder_out_cache_loc = []
for i, req in enumerate(self.reqs):
encoder_len = self.encoder_lens_cpu[i]
seq_lens[i] -= encoder_len
if len(req.prefix_indices) < encoder_len:
# NOTE: the encoder part should be considered as a whole
assert len(req.prefix_indices) == 0
input_ids[i] = input_ids[i][encoder_len:]
encoder_out_cache_loc.append(self.out_cache_loc[pt : pt + encoder_len])
decoder_out_cache_loc.append(
self.out_cache_loc[pt + encoder_len : pt + req.extend_input_len]
)
self.extend_lens[i] -= encoder_len
self.extend_num_tokens -= encoder_len
else:
decoder_out_cache_loc.append(
self.out_cache_loc[pt : pt + req.extend_input_len]
)
self.prefix_lens[i] -= encoder_len
pt += req.extend_input_len
# Reassign
self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32).to(
self.device, non_blocking=True
)
self.seq_lens = torch.tensor(seq_lens, dtype=torch.int32).to(
self.device, non_blocking=True
)
if not decoder_out_cache_loc:
self.out_cache_loc = torch.empty(0, dtype=torch.int32).to(
self.device, non_blocking=True
)
else:
self.out_cache_loc = torch.cat(decoder_out_cache_loc)
if not encoder_out_cache_loc:
self.encoder_out_cache_loc = torch.empty(0, dtype=torch.int32).to(
self.device, non_blocking=True
)
else:
self.encoder_out_cache_loc = torch.cat(encoder_out_cache_loc)
assert len(self.out_cache_loc) == self.extend_num_tokens
def prepare_for_extend(self):
self.forward_mode = ForwardMode.EXTEND
bs = len(self.reqs)
reqs = self.reqs
input_ids = [r.fill_ids[len(r.prefix_indices) :] for r in reqs]
extend_num_tokens = sum(len(ids) for ids in input_ids)
seq_lens = []
# Allocate memory
req_pool_indices = self.alloc_req_slots(bs)
out_cache_loc = self.alloc_token_slots(extend_num_tokens)
pt = 0
for i, req in enumerate(reqs):
already_computed = (
req.extend_logprob_start_len + 1 + req.cached_tokens
if req.extend_logprob_start_len > 0
else 0
)
req.cached_tokens += len(req.prefix_indices) - already_computed
req.req_pool_idx = req_pool_indices[i]
pre_len, seq_len = len(req.prefix_indices), len(req.fill_ids)
seq_lens.append(seq_len)
assert seq_len - pre_len == req.extend_input_len
if pre_len > 0:
self.req_to_token_pool.write(
(req.req_pool_idx, slice(0, pre_len)), req.prefix_indices
)
self.req_to_token_pool.write(
(req.req_pool_idx, slice(pre_len, seq_len)),
out_cache_loc[pt : pt + req.extend_input_len],
)
# Compute the relative logprob_start_len in an extend batch
if req.logprob_start_len >= pre_len:
extend_logprob_start_len = min(
req.logprob_start_len - pre_len, req.extend_input_len - 1
)
else:
extend_logprob_start_len = req.extend_input_len - 1
req.extend_logprob_start_len = extend_logprob_start_len
pt += req.extend_input_len
req.is_retracted = False
# Set fields
self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32).to(
self.device, non_blocking=True
)
self.req_pool_indices = torch.tensor(req_pool_indices, dtype=torch.int32).to(
self.device, non_blocking=True
)
self.seq_lens = torch.tensor(seq_lens, dtype=torch.int32).to(
self.device, non_blocking=True
)
self.out_cache_loc = out_cache_loc
self.seq_lens_sum = sum(seq_lens)
if self.return_logprob:
self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
self.extend_num_tokens = extend_num_tokens
self.prefix_lens = [len(r.prefix_indices) for r in reqs]
self.extend_lens = [r.extend_input_len for r in reqs]
self.extend_logprob_start_lens = [r.extend_logprob_start_len for r in reqs]
if self.model_config.is_encoder_decoder:
self.prepare_encoder_info_extend(input_ids, seq_lens)
self.sampling_info = SamplingBatchInfo.from_schedule_batch(
self,
self.model_config.vocab_size,
global_server_args_dict["disable_penalizer"],
)
def mix_with_running(self, running_batch: "ScheduleBatch"):
self.forward_mode = ForwardMode.MIXED
running_bs = running_batch.batch_size()
for req in running_batch.reqs:
req.fill_ids = req.origin_input_ids + req.output_ids
req.extend_input_len = 1
input_ids = torch.cat([self.input_ids, running_batch.input_ids])
out_cache_loc = torch.cat([self.out_cache_loc, running_batch.out_cache_loc])
self.merge_batch(running_batch)
self.input_ids = input_ids
self.out_cache_loc = out_cache_loc
self.extend_num_tokens += running_bs
# NOTE: prefix_indices is what has been cached, but we don't cache each decode step
self.prefix_lens.extend(
[
len(r.origin_input_ids) + len(r.output_ids) - 1
for r in running_batch.reqs
]
)
self.extend_lens.extend([1] * running_bs)
self.extend_logprob_start_lens.extend([0] * running_bs)
def check_decode_mem(self):
bs = len(self.reqs)
if self.token_to_kv_pool.available_size() >= bs:
return True
self.tree_cache.evict(bs, self.token_to_kv_pool.free)
if self.token_to_kv_pool.available_size() >= bs:
return True
return False
def retract_decode(self):
sorted_indices = [i for i in range(len(self.reqs))]
# TODO(lsyin): improve retraction policy for radix cache
sorted_indices.sort(
key=lambda i: (
len(self.reqs[i].output_ids),
-len(self.reqs[i].origin_input_ids),
),
reverse=True,
)
retracted_reqs = []
seq_lens_cpu = self.seq_lens.cpu().numpy()
first_iter = True
while (
self.token_to_kv_pool.available_size()
< len(sorted_indices) * global_config.retract_decode_steps
or first_iter
):
if len(sorted_indices) == 1:
# Corner case: only one request left
assert (
self.token_to_kv_pool.available_size() > 0
), "No space left for only one request"
break
first_iter = False
idx = sorted_indices.pop()
req = self.reqs[idx]
retracted_reqs.append(req)
if isinstance(self.tree_cache, ChunkCache):
# ChunkCache does not have eviction
token_indices = self.req_to_token_pool.req_to_token[
req.req_pool_idx, : seq_lens_cpu[idx]
]
self.token_to_kv_pool.free(token_indices)
self.req_to_token_pool.free(req.req_pool_idx)
del self.tree_cache.entries[req.rid]
else:
# TODO: apply more fine-grained retraction
last_uncached_pos = len(req.prefix_indices)
token_indices = self.req_to_token_pool.req_to_token[
req.req_pool_idx, last_uncached_pos : seq_lens_cpu[idx]
]
self.token_to_kv_pool.free(token_indices)
self.req_to_token_pool.free(req.req_pool_idx)
# release the last node
self.tree_cache.dec_lock_ref(req.last_node)
# NOTE(lsyin): we should use the newly evictable memory instantly.
residual_size = (
len(sorted_indices) * global_config.retract_decode_steps
- self.token_to_kv_pool.available_size()
)
residual_size = max(0, residual_size)
self.tree_cache.evict(residual_size, self.token_to_kv_pool.free)
req.prefix_indices = []
req.last_node = None
req.extend_input_len = 0
req.is_retracted = True
# For incremental logprobs
req.last_update_decode_tokens = 0
req.logprob_start_len = 10**9
self.filter_batch(keep_indices=sorted_indices)
# Reqs in batch are filtered
total_decoded_tokens = sum(len(r.output_ids) for r in self.reqs)
total_max_new_tokens = sum(r.sampling_params.max_new_tokens for r in self.reqs)
new_estimate_ratio = (
total_decoded_tokens + global_config.retract_decode_steps * len(self.reqs)
) / total_max_new_tokens
new_estimate_ratio = min(1.0, new_estimate_ratio)
return retracted_reqs, new_estimate_ratio
def check_for_jump_forward(self, pad_input_ids_func):
jump_forward_reqs = []
keep_indices = set(i for i in range(len(self.reqs)))
for i, req in enumerate(self.reqs):
if req.grammar is not None:
jump_helper = req.grammar.try_jump_forward(req.tokenizer)
if jump_helper:
suffix_ids, _ = jump_helper
# Current ids, for cache and revert
cur_all_ids = tuple(req.origin_input_ids + req.output_ids)[:-1]
cur_output_ids = req.output_ids
req.output_ids.extend(suffix_ids)
decode_res, new_text = req.get_next_inc_detokenization()
if not decode_res:
req.output_ids = cur_output_ids
continue
(
jump_forward_str,
next_state,
) = req.grammar.jump_forward_str_state(jump_helper)
# Make the incrementally decoded text part of jump_forward_str
# so that the UTF-8 will not corrupt
jump_forward_str = new_text + jump_forward_str
if not req.jump_forward_and_retokenize(
jump_forward_str, next_state
):
req.output_ids = cur_output_ids
continue
# The decode status has diverged from detokenizer_manager
req.vid += 1
# insert the old request into tree_cache
self.tree_cache.cache_finished_req(req, cur_all_ids)
# re-applying image padding
if req.image_inputs is not None:
req.origin_input_ids = pad_input_ids_func(
req.origin_input_ids_unpadded, req.image_inputs
)
jump_forward_reqs.append(req)
keep_indices.remove(i)
self.filter_batch(keep_indices=list(keep_indices))
return jump_forward_reqs
def prepare_encoder_info_decode(self):
# Reset the encoder cached status
self.encoder_cached = [True] * len(self.reqs)
def prepare_for_decode(self, enable_overlap: bool = False):
self.forward_mode = ForwardMode.DECODE
self.input_ids = self.output_ids
self.output_ids = None
if self.sampling_info.penalizer_orchestrator:
self.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
self.input_ids
)
# Alloc mem
bs = len(self.reqs)
self.out_cache_loc = self.alloc_token_slots(bs)
if self.model_config.is_encoder_decoder:
locs = self.encoder_lens + self.seq_lens
self.prepare_encoder_info_decode()
else:
locs = self.seq_lens
if enable_overlap:
# Do not use in-place operations in the overlap mode
self.req_to_token_pool.write(
(self.req_pool_indices, locs), self.out_cache_loc
)
self.seq_lens = self.seq_lens + 1
else:
# A faster in-place version
self.req_to_token_pool.write(
(self.req_pool_indices, locs), self.out_cache_loc
)
self.seq_lens.add_(1)
self.seq_lens_sum += bs
def filter_batch(
self,
being_chunked_req: Optional[Req] = None,
keep_indices: Optional[List[int]] = None,
):
if keep_indices is None:
keep_indices = [
i
for i in range(len(self.reqs))
if not self.reqs[i].finished() and self.reqs[i] is not being_chunked_req
]
if keep_indices is None or len(keep_indices) == 0:
# Filter out all requests
self.reqs = []
return
if len(keep_indices) == len(self.reqs):
# No need to filter
return
if self.model_config.is_encoder_decoder:
self.encoder_lens = self.encoder_lens[keep_indices]
self.encoder_lens_cpu = [self.encoder_lens_cpu[i] for i in keep_indices]
self.reqs = [self.reqs[i] for i in keep_indices]
new_indices = torch.tensor(keep_indices, dtype=torch.int32).to(
self.device, non_blocking=True
)
self.req_pool_indices = self.req_pool_indices[new_indices]
self.seq_lens = self.seq_lens[new_indices]
self.out_cache_loc = None
self.seq_lens_sum = self.seq_lens.sum().item()
self.output_ids = self.output_ids[new_indices]
self.return_logprob = any(req.return_logprob for req in self.reqs)
if self.return_logprob:
self.top_logprobs_nums = [self.top_logprobs_nums[i] for i in keep_indices]
else:
self.top_logprobs_nums = None
self.has_stream = any(req.stream for req in self.reqs)
self.has_grammar = any(req.grammar for req in self.reqs)
self.sampling_info.filter_batch(keep_indices, new_indices)
def merge_batch(self, other: "ScheduleBatch"):
# Penalizer orchestrator must be merged before Batch.reqs is merged. This is because
# orchestrator.merge() depends on Batch.reqs during preparation of each penalizers, so it
# needs to be called with pre-merged Batch.reqs.
self.sampling_info.merge_batch(other.sampling_info)
# Encoder-decoder infos
if self.model_config.is_encoder_decoder:
self.encoder_lens = torch.cat([self.encoder_lens, other.encoder_lens])
self.encoder_lens_cpu.extend(other.encoder_lens_cpu)
self.req_pool_indices = torch.concat(
[self.req_pool_indices, other.req_pool_indices]
)
self.seq_lens = torch.concat([self.seq_lens, other.seq_lens])
self.out_cache_loc = None
self.seq_lens_sum += other.seq_lens_sum
if self.output_ids is not None:
self.output_ids = torch.concat([self.output_ids, other.output_ids])
if self.return_logprob and other.return_logprob:
self.top_logprobs_nums.extend(other.top_logprobs_nums)
elif self.return_logprob:
self.top_logprobs_nums.extend([0] * len(other.reqs))
elif other.return_logprob:
self.top_logprobs_nums = [0] * len(self.reqs) + other.top_logprobs_nums
self.reqs.extend(other.reqs)
self.return_logprob = self.return_logprob or other.return_logprob
self.has_stream = self.has_stream or other.has_stream
self.has_grammar = self.has_grammar or other.has_grammar
def get_model_worker_batch(self):
if self.forward_mode.is_decode():
extend_seq_lens = extend_prefix_lens = extend_logprob_start_lens = None
else:
extend_seq_lens = self.extend_lens
extend_prefix_lens = self.prefix_lens
extend_logprob_start_lens = self.extend_logprob_start_lens
if self.has_grammar:
self.sampling_info.grammars = [req.grammar for req in self.reqs]
else:
self.sampling_info.grammars = None
global bid
bid += 1
return ModelWorkerBatch(
bid=bid,
forward_mode=self.forward_mode,
input_ids=self.input_ids,
req_pool_indices=self.req_pool_indices,
seq_lens=self.seq_lens,
out_cache_loc=self.out_cache_loc,
seq_lens_sum=self.seq_lens_sum,
req_to_token_pool_records=self.req_to_token_pool.get_write_records(),
return_logprob=self.return_logprob,
top_logprobs_nums=self.top_logprobs_nums,
extend_num_tokens=self.extend_num_tokens,
extend_seq_lens=extend_seq_lens,
extend_prefix_lens=extend_prefix_lens,