Skip to content

Latest commit

 

History

History
124 lines (102 loc) · 4.11 KB

README.md

File metadata and controls

124 lines (102 loc) · 4.11 KB

MeshAvatar: Learning High-quality Triangular Human Avatars from Multi-view Videos (ECCV 2024)

Yushuo Chen1, Zerong Zheng2, Zhe Li1, Chao Xu2, Yebin Liu1

1Tsinghua Univserity 2NNKosmos Technology

teaser

Installation

  1. Install dependencies
conda create -n meshavatar python=3.9
conda activate meshavatar

conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge
pip install ninja imageio PyOpenGL glfw xatlas gdown
pip install git+https://github.com/NVlabs/nvdiffrast/
pip install --global-option="--no-networks" git+https://github.com/NVlabs/tiny-cuda-nn#subdirectory=bindings/torch
imageio_download_bin freeimage

pip install -r requirements.txt
  1. Download SMPL, SMPL-X, and the model correspondences. Organize them in some directory as follow and specify smpl_dir in data_preprocessing/script.py.
smpl_models/
    smpl/
        SMPL_NEUTRAL.pkl
    smplx/
        SMPLX_NEUTRAL.pkl
        SMPLX_NEUTRAL.npz
    model_transfer/
        smplx_to_smpl.pkl
  1. Download or build PointInterpolant. Compilelbs_surf_grad, the c++ program for computing surface gradient of LBS weights.
git clone https://github.com/mkazhdan/PoissonRecon
cd PoissonRecon
make pointinterpolant
cd ..

cd data_preprocessing/diffused_skinning
sh compile_lbs_surf_grad.sh
cd ../..

Data Preparation

Data Organization

AvatarReX Dataset [link]

Directly download the dataset. If you want to reproduce the experiments in the paper, please resize the images to 1024x750 first, due to the limited GPU Memory.

SyntheticHuman++ Dataset [link]

Since our code only supports SMPL-X model, we have converted the parameters here (using the official transfer model).

Run data_preprocessing/convert_calib.py to convert the calibration format.

Custom Dataset

Organize your dataset as AvatarReX dataset:

<cam_id_0>/
    mask/pha/
        00000000.jpg
        ...
    00000000.jpg
    ...
<cam_id_1>/
...
<cam_id_n>/
calibration_full.json
smpl_params.npz

Data Preprocessing

Specify data_dir, smpl_file_path and dataset_name in your config file. Then preprocess the dataset by

python data_preprocessing/script.py --config <config_file>

Training

Run using single gpu

sh run.sh <gpu_id> <config_file>
# Example
sh run.sh 0 configs/jody.json

or using multiple gpus (apex should be additionally installed)

sh run_multi.sh <gpu_ids> <config_file> (<master_port>, optional)
# Example
sh run_multi.sh 0,1 configs/avatarrex_zzr.json

Testing

Run

python test.py --config out/<exp_name>/exp.json

Modifiy the arguments in test.py to choose any output you want.

Acknowledgement

Part of our code is borrowed from the following repos, great thanks to them!

Citation

If you find our code or data is helpful to your research, please consider citing our paper.

@misc{chen2024meshavatar,
    title={MeshAvatar: Learning High-quality Triangular Human Avatars from Multi-view Videos}, 
    author={Yushuo Chen and Zerong Zheng and Zhe Li and Chao Xu and Yebin Liu},
    year={2024},
    eprint={2407.08414},
    archivePrefix={arXiv},
    primaryClass={cs.CV},
    url={https://arxiv.org/abs/2407.08414}, 
}