forked from XingangPan/SCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.lua
207 lines (183 loc) · 7.25 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- The training loop and learning rate schedule
--
local optim = require 'optim'
local models = require 'models/init'
local checkpoints = require 'checkpoints'
local M = {}
local Trainer = torch.class('resnet.Trainer', M)
function Trainer:__init(model, criterion, opt, optimState, checkpoint)
print('init trainer')
self.model = model
self.criterion = criterion
self.optimState = optimState or {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
nesterov = true,
dampening = 0.0,
weightDecay = opt.weightDecay,
}
self.iter = 1
if checkpoint then
self.iter = checkpoint.iter
end
self.opt = opt
self.params, self.gradParams = model:getParameters()
self.finish = false
end
function Trainer:train(epoch, dataloader)
-- Trains the model for a single epoch
print('training')
local timer = torch.Timer()
local dataTimer = torch.Timer()
local function feval()
return self.criterion.output, self.gradParams
end
local trainSize = dataloader:size()
local top1Sum, top5Sum, lossSum, lossSum2 = 0.0, 0.0, 0.0, 0.0
local N = 0
print('=> Training epoch # ' .. epoch)
-- set the batch norm to training mode
self.model:training()
for n, sample in dataloader:run() do
if self.iter>=self.opt.maxIter then
self.finish = true
break
end
self.optimState.learningRate = self:learningRate(epoch)
local dataTime = dataTimer:time().real
-- Copy input and target to the GPU
self:copyInputs(sample)
self.input = self.input:cuda()
local output = self.model:forward(self.input)
local batchSize = output[1]:size(1)
local loss, Loss = self.criterion:forward(self.model.output, self.target)
self.model:zeroGradParameters()
self.criterion:backward(self.model.output, self.target)
self.model:backward(self.input, self.criterion.gradInput)
optim.sgd(feval, self.params, self.optimState)
N = N + batchSize
lossSum = lossSum + Loss[1]*batchSize -- loss for segmentation branch
lossSum2 = lossSum2 + Loss[2]*batchSize -- loss for classification branch
print((' | Epoch: [%d][%d/%d][%d] Time %.2f LR %.5f Err1 %.5f (%.5f) Err2 %.5f (%.5f)'):format(
epoch, n, trainSize, self.iter, timer:time().real, self.optimState.learningRate, Loss[1], lossSum / N, Loss[2], lossSum2 / N))
-- check that the storage didn't get changed do to an unfortunate getParameters call
assert(self.params:storage() == self.model:parameters()[1]:storage())
if self.iter % 500 == 0 then
checkpoints.save(epoch, self.model, self.optimState, false, self.opt, self.iter)
end
timer:reset()
dataTimer:reset()
self.iter = self.iter + 1
end
return lossSum / N, self.finish
end
function Trainer:test(epoch, dataloader)
-- Computes the top-1 and top-5 err on the validation set
local timer = torch.Timer()
local dataTimer = torch.Timer()
local size = dataloader:size()
local nCrops = self.opt.tenCrop and 10 or 1
local AccSum, RecSum, IOUSum, lossSum, lossSum2 = 0.0, 0.0, 0.0, 0.0, 0.0
local N = 0
self.model:evaluate()
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
-- Copy input and target to the GPU
self:copyInputs(sample)
self.input = self.input:cuda()
local output = self.model:forward(self.input)
local accuracy, avgRecall, avgIOU
local batchSize = 0
batchSize = output[1]:size(1)
accuracy, avgRecall, avgIOU = self:computeAccuracy(output[1]:float(), self.target[1]:float())
AccSum = AccSum + accuracy*batchSize
RecSum = RecSum + avgRecall*batchSize
IOUSum = IOUSum + avgIOU*batchSize
local loss, Loss = self.criterion:forward(self.model.output, self.target)
N = N + batchSize
lossSum = lossSum + Loss[1]*batchSize
lossSum2 = lossSum2 + Loss[2]*batchSize
print((' | Test: [%d][%d/%d] Err1 %.5f (%.5f) Err2 %.5f (%.5f) Acc %.2f (%.3f) mRec %.2f (%.3f) mIOU %.2f (%.3f)'):format(
epoch, n, size, Loss[1], lossSum / N, Loss[2], lossSum2 / N, accuracy, AccSum / N, avgRecall, RecSum / N, avgIOU, IOUSum / N))
timer:reset()
dataTimer:reset()
end
self.model:training()
return lossSum / N, AccSum / N, RecSum / N, IOUSum / N
end
function Trainer:copyInputs(sample)
-- Copies the input to a CUDA tensor, if using 1 GPU, or to pinned memory,
-- if using DataParallelTable. The target is always copied to a CUDA tensor
self.input = self.input or (self.opt.nGPU == 1
and torch.CudaTensor()
or cutorch.createCudaHostTensor())
self.input:resize(sample.input:size()):copy(sample.input)
self.segLabel = self.segLabel or (torch.CudaLongTensor and torch.CudaLongTensor()or torch.CudaTensor())
self.segLabel:resize(sample.target[1]:size()):copy(sample.target[1])
self.exist = self.exist or torch.CudaLongTensor()
self.exist:resize(sample.target[2]:size()):copy(sample.target[2])
self.target = {self.segLabel:cuda(), self.exist:cuda()}
end
function Trainer:learningRate(epoch)
-- Training schedule
local decay = 0
if self.opt.dataset == 'lane' then
decay = 1 - self.iter/self.opt.maxIter
elseif self.opt.dataset == 'cifar10' then
decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0
elseif self.opt.dataset == 'cifar100' then
decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0
end
return self.opt.LR * math.pow(decay, 0.9)
end
function Trainer:computeAccuracy( output, target )
-- This is not the final evaluation code.
-- This only gives primal evaluation for segmentation.
local batchSize = output:size(1)
local classNum = output:size(2)
local h = output:size(3)
local w = output:size(4)
local accuracy, avgRecall, avgIOU = 0.0, 0.0, 0.0
for i = 1, batchSize do
local _, maxMap = torch.max(output[{i,{},{},{}}], 1)
local target_i = target[{i,{},{}}]:long()
-- accuracy
accuracy = accuracy + torch.sum(torch.eq(maxMap, target_i)) / (h*w)
-- recall, IOU
local recall = 0.0
local IOU = 0.0
local numClass, numUnion = 0, 0
for c = 1, classNum do
local num_c = torch.sum(torch.eq(target_i, c))
local num_c_pred = torch.sum(torch.eq(maxMap, c))
local numTrue = torch.sum(torch.cmul(torch.eq(maxMap, c), torch.eq(target_i, c)))
local unionSize = num_c + num_c_pred - numTrue
if num_c > 0 or num_c_pred > 0 then
IOU = IOU + numTrue / unionSize
numUnion = numUnion + 1
end
if num_c > 0 then
recall = recall + numTrue / num_c
numClass = numClass + 1
end
end
recall = recall / numClass
avgRecall = avgRecall + recall
IOU = IOU / numUnion
avgIOU = avgIOU + IOU
end
accuracy = accuracy / batchSize
avgRecall = avgRecall / batchSize
avgIOU = avgIOU / batchSize
return accuracy * 100, avgRecall * 100, avgIOU * 100
end
return M.Trainer