BIP: 114 Layer: Consensus (soft fork) Title: Merkelized Abstract Syntax Tree Author: Johnson Lau <jl2012@xbt.hk> Comments-Summary: No comments yet. Comments-URI: https://github.com/bitcoin/bips/wiki/Comments:BIP-0114 Status: Draft Type: Standards Track Created: 2016-04-02 License: PD
This BIP defines a new witness program type that uses a Merkle tree to encode mutually exclusive branches in a script. This enables complicated redemption conditions that are currently not possible, improves privacy by hiding unexecuted scripts, and allows inclusion of non-consensus enforced data with very low or no additional cost.
Bitcoin uses a script system to specify the conditions for redemption of transaction outputs. In its original design, the conditions for redemption are directly recorded in the scriptPubKey by the sender of the funds. This model has several drawbacks, particularly for complicated scripts:
- It could be difficult for the receiver to specify the conditions;
- Large scripts take up more UTXO space;
- The sender will pay for the additional block space;
- To prevent DoS attack, scripts are limited to 10,000 bytes and 201 op codes;
- Any unexecuted branches and non-consensus enforced data in the script are visible to the public, consuming block space while damaging privacy.
The BIP141 defines 2 new types of scripts that support segregated witness. The pay-to-witness-script-hash (P2WSH) is similar to P2SH is many ways. By supplying the script in witness, P2WSH restores the original 10,000 byte script limit. However, it still requires publishing of unexecuted branches.
The idea of Merkelized Abstract Syntax Tree (MAST) is to use a Merkle tree to encode branches in a script. When spending, users may provide only the branches they are executing, and hashes that connect the branches to the fixed size Merkel root. This reduces the size of redemption stack from O(n) to O(log n) (n as the number of branches). This enables complicated redemption conditions that is currently not possible due to the script size and opcode limit, improves privacy by hiding unexecuted branches, and allows inclusion of non-consensus enforced data with very low or no additional cost.
In BIP141, witness programs with a version byte of 1 or larger are considered to be anyone-can-spend scripts. The following new validation rules are applied if the witness program version byte is 1 and the program size is 32 bytes.[1] The witness program is the MAST Root
.
To redeem an output of this kind, the witness must consist of the following items:
Script_stack_1 Script_stack_2 . . Script_stack_X (X ≥ 0) Subscript_1 Subscript_2 . . Subscript_Y (1 ≤ Y ≤ 255) Position Path Metadata (Y|MAST Version)
Metadata
is the last witness item. It is a vector of 1 to 5 bytes. The first byte is an unsigned integer between 1 to 255 denoting the number of Subscript
(defined hereinafter). The following 0 to 4 byte(s) is an unsigned little-endian integer denoting the MAST version
. MAST Version
must be minimally encoded (the most significant byte must not be 0).
Path
is the second last witness item. It is a serialized Merkle path of the Script Hash
(defined hereinafter). Size of Path
must be a multiple of 32 bytes, and not more than 1024 bytes. Each 32 byte word is a double-SHA256 merkle node in the merkle branch connecting to the Script Root
(defined hereinafter). Depth
of the tree (0 to 32) is the size of Path
divided by 32.
Position
is the third last witness item. It indicates the location of the Script Hash
in the Merkle tree, with zero indicating the leftmost position. It is an unsigned little-endian integer with not more than 4 bytes. It must be minimally encoded: the value must not be larger than the maximum number of items allowed by the Depth
of the tree, and the most significant byte must not be 0. For example, if Depth
is 4, the valid range of Position
is 0 to 15 (24-1).
Depends on the first byte of Metadata
, there should be 1 to 255 Subscript
witness item(s) before Position
.
Script Hash
is defined as:
Script Hash = H(Y|H(Subscript_1)|H(Subscript_2)|...|H(Subscript_Y)) H() = SHA256(SHA256())
where Y
is a 1-byte value denoting number of Subscript
, followed by the hash of each Subscript
Script Root
is the Merkle root calculated by the ComputeMerkleRootFromBranch
function, using Script Hash
, Path
and Position
.
MAST Root
is H(MAST Version|Script Root)
. The pre-image has a fixed size of 36 bytes: 4 bytes for MAST Version
(unsigned little-endian integer) and 32 bytes for Script Root
.
The script evaluation fails if MAST Root
does not match the witness program.
If the MAST Root
matches the witness program and MAST Version
is greater than 0, the script returns a success without further evaluation. SigOpsCost
is counted as 0. This is reserved for future script upgrades.
If the MAST Version
is 0, the Subscript
(s) are serialized to form the final MAST Script
, beginning with Subscript_1. The unused witness item(s) before the Subscript_1 are used as Input Stack
to feed to the MASTScript
. (Similar to P2WSH in BIP141)
The script fails with one of the following conditions:
MAST Script
is malformed (i.e. not enough data provided for the last push operation). IndividualSubscript
might be malformed, as long as they are serialized into a validMAST Script
- Size of
MAST Script
is larger than 10,000 bytes - Size of any one of the
Input Stack
item is larger than 520 bytes - Number of non-push operations (
nOpCount
) is more than 201.nOpCount
is the sum of the number of non-push operations inMAST Script
(counted in the same way as P2WSHwitnessScript
), number ofSubscript
(Y), andDepth
of the Merkle tree.
MAST Script
is then evaluated with the Input Stack
(with some new or redefined opcodes described in BIPXXX). The evaluation must not fail, and result in an exactly empty stack.
Counting of SigOpsCost
is based on the MAST Script
, described in BIPYYY.
This proposal is a restricted case of more general MAST. In a general MAST design, users may freely assign one or more script branches for execution. In this proposal, only one branch is allowed for execution, and users are required to transform a complicated condition into several mutually exclusive branches. For example, if the desired redeem condition is:
(A or B) and (C or D or E) and (F or G)
In a general MAST design, the 7 branches (A to G) will form a 3-level Merkle tree, plus an "overall condition" describing the relationship of different branches. In redemption, the "overall condition", executed branches (e.g. B, D, F), and Merkle path data will be provided for validation.
In the current proposal, the user has to transform the redeem condition into 12 mutually exclusive branches and form a 4-level Merkle tree, and present only one branch in redemption:
A and C and F B and C and F A and D and F . . B and E and G
One way to implement the general MAST design is using a combination of OP_EVAL
, OP_CAT
, and OP_HASH256
. However, that will suffer from the problems of OP_EVAL
, including risks of indefinite program loop and inability to do static program analysis. A complicated implementation is required to fix these problems and is difficult to review.
The advantages of the current proposal are:
Subscript
are located at a fixed position in the witness stack. This allows static program analysis, such as staticSigOpsCost
counting and early termination of scripts with disabled opcodes.- If different parties in a contract do not want to expose their scripts to each other, they may provide only
H(Subscript)
and keep theSubscript
private until redemption. - If they are willing to share the actual scripts, they may combine them into one
Subscript
for each branch, saving somenOpCount
and a few bytes of witness space.
- It may require more branches than a general MAST design (as shown in the previous example) and take more witness space in redemption
- Creation and storage of the MAST structure may take more time and space. However, such additional costs affect only the related parties in the contract but not any other Bitcoin users.
This proposal allows users to indicate the version of scripting language in the witness, which is cheaper than doing that in scriptPubKey
or scriptSig
. Undefined versions remain anyone-can-spend and are reserved for future expansions. A new version could be used for relaxing constraints (e.g. the 10,000 bytes size limit of MAST Script
), adding or redefining opcodes, or even introducing a completely novel scripting system.
In version 0 MAST, the extra hashing operations in calculating the MAST Root
are counted towards the 201 nOpCount
limit to prevent abusive use. This limitation is not applied to undefined MAST Version
for flexibility, but it is constrained by the 255 Subscript
and 32 Depth
limits.
This proposal requires script evaluation resulting in an empty stack, instead of a single TRUE
value as in P2WSH. This allows each party in a contract to provide its own Subscript
, and demonstrate the required Input Stack
to clean up its own Subscript
. In this case, order of the Subscript
is not important since the overall objective is to clean up the stack after evaluation.
Subscript: SA = 1 EQUALVERIFY (0x5188) SB = 2 EQUALVERIFY (0x5288) SC = 3 EQUALVERIFY (0x5388) SD = 4 EQUALVERIFY (0x5488) SE = 5 EQUALVERIFY (0x5588) SF = 6 EQUALVERIFY (0x5688) SG = 7 EQUALVERIFY (0x5788) SH = 8 EQUALVERIFY (0x5888) M = RETURN "Hello" (0x6a0548656c6c6f) Hash: HA = H(0x01|H(SA)) = H(0x015acb54166e0db370cd1b05a29120373568dacea2abc3748459ec3da2106e4b4e) = 0xd385d7268ad7e1ec51660f833d54787d2d8d79b6b1809d9c1d06c9e71f7be204 HB = H(0x02|H(SB)|H(SC)) = 0x7cbfa08e44ea9f4f996873be95d9bffd97d4b91a5af32cc5f64efb8461727cdd HF = H(0x03|H(SD)|H(SE)|H(SF)) = 0x4611414355945a7c2fcc62a53a0004821b87e68f93048ffba7a55a3cb1e9783b HG = H(0x01|H(SG)) = 0xaa5fbdf58264650eadec33691ba1e7606d0a62f570eea348a465c55bc86ffc10 HC = H(0x01|H(M)) = 0x70426d480d5b28d93c5be54803681f99abf4e8df4eab4dc87aaa543f0d138159 HD = H(0x0x|H(SH)) = 0x8482f6c9c3fe90dd4d533b4efedb6a241b95ec9267d1bd5aaaee36d2ce2dd6da HE = H(HA|HB) = 0x049b9f2f94f0a9bdea624e39cd7d6b27a365c6a0545bf0e9d88d86eff4894210 HH = H(HC|HD) = 0xc709fdc632f370f3367da45378d1cf430c5fda6805e731ad5761c213cf2d276e HI = H(HE|HF) = 0xead5e1a1e7e41b77b794f091df9be3f0e9f41d47304eb43dece90688f69843b7 HJ = H(HG|HH) = 0xd00fc690c4700d0f983f9700740066531ea826b21a4cbc62f80317261723d477 Script Root = H(HI|HJ) = 0x26d5235d20daf1440a15a248f5b5b4f201392128072c55afa64a26ccc6f56bd9 MAST Root = H(MAST Version|Script Root) = H(0x0000000026d5235d20daf1440a15a248f5b5b4f201392128072c55afa64a26ccc6f56bd9) = 0xb4b706e0c02eab9aba58419eb7ea2a286fb1c01d7406105fc12742bf8a3f97c9
The scriptPubKey with native witness program is:
1 <0xb4b706e0c02eab9aba58419eb7ea2a286fb1c01d7406105fc12742bf8a3f97c9> (0x5120b4b706e0c02eab9aba58419eb7ea2a286fb1c01d7406105fc12742bf8a3f97c9)
To redeem with the SD|SE|SF
branch, the witness is
Script_stack_1: 0x06 Script_stack_2: 0x05 Script_stack_3: 0x04 Subscript_1: 0x5488 Subscript_2: 0x5588 Subscript_3: 0x5688 Position: 0x01 (HF is the second hash in its level) Path (HE|HJ): 0x049b9f2f94f0a9bdea624e39cd7d6b27a365c6a0545bf0e9d88d86eff4894210d00fc690c4700d0f983f9700740066531ea826b21a4cbc62f80317261723d477 Metadata: 0x03 (3 Subscript)
When constructing a MAST, if the user believes that some of the branches are more likely to be executed, they may put them closer to the Script Root
. It will save some witness space when the preferred branches are actually executed.
The following is the "Escrow with Timeout" example in BIP112:
IF 2 <Alice's pubkey> <Bob's pubkey> <Escrow's pubkey> 3 CHECKMULTISIG ELSE "30d" CHECKSEQUENCEVERIFY DROP <Alice's pubkey> CHECKSIG ENDIF
Using compressed public key, the size of this script is 150 bytes.
With MAST, this script could be broken down into 2 mutually exclusive branches:[2]
2 <Alice's pubkey> <Bob's pubkey> <Escrow's pubkey> 3 CHECKMULTISIGVERIFY (105 bytes) "30d" CHECKSEQUENCEVERIFY <Alice's pubkey> CHECKSIGVERIFY (42 bytes)
Since only one branch will be published, it is more difficult for a blockchain analyst to determine the details of the escrow.
The following is the "Hashed TIme-Lock Contract" example in BIP112:
HASH160 DUP <R-HASH> EQUAL IF "24h" CHECKSEQUENCEVERIFY 2DROP <Alice's pubkey> ELSE <Commit-Revocation-Hash> EQUAL NOTIF "Timestamp" CHECKLOCKTIMEVERIFY DROP ENDIF <Bob's pubkey> ENDIF CHECKSIG
To create a MAST Root, it is flattened to 3 mutually exclusive branches:
HASH160 <R-HASH> EQUALVERIFY "24h" CHECKSEQUENCEVERIFY <Alice's pubkey> CHECKSIGVERIFY HASH160 <Commit-Revocation-Hash> EQUALVERIFY <Bob's pubkey> CHECKSIGVERIFY "Timestamp" CHECKLOCKTIMEVERIFY <Bob's pubkey> CHECKSIGVERIFY
which significantly improves readability and reduces the witness size when it is redeemed.
The current CHECKMULTISIG supports up to 20 public keys. Although it is possible to extend it beyond 20 keys by using multiple CHECKSIGs and IF/ELSE conditions, the construction could be very complicated and soon use up the 10,000 bytes and 201 nOpCount
limit.
With MAST, large and complex multi-signature constructs could be flattened to many simple CHECKMULTISIGVERIFY conditions. For example, a 3-of-2000 multi-signature scheme could be expressed as 1,331,334,000 3-of-3 CHECKMULTISIGVERIFY, which forms a 31-level MAST. The scriptPubKey still maintains a fixed size of 34 bytes, and the redemption witness will be very compact, with less than 1,500 bytes.
Currently, committing non-consensus enforced data in the scriptPubKey requires the use of OP_RETURN which occupies additional block space. With MAST, users may commit such data as a branch. Depends on the number of executable branches, inclusion of such a commitment may incur no extra witness space, or 32 bytes at most.
An useful case would be specifying "message-signing keys", which are not valid for spending, but allow users to sign any message without touching the cold storage "funding key".
As a soft fork, older software will continue to operate without modification. Non-upgraded nodes, however, will consider MAST programs as anyone-can-spend scripts. Wallets should always be wary of anyone-can-spend scripts and treat them with suspicion.
This BIP depends on BIP141 and will be deployed by version-bits BIP9 after BIP141 is enforced. Exact details TBD.
The idea of MAST originates from Russell O’Connor, Pieter Wuille, and Peter Todd.
https://github.com/jl2012/bitcoin/tree/bip114v2 (WIP)
//New rules apply if version byte is 1 and witness program size is 32 bytes
if (witversion == 1 && program.size() == 32 && (flags & SCRIPT_VERIFY_MAST)) {
CHashWriter sRoot(SER_GETHASH, 0);
CHashWriter sScriptHash(SER_GETHASH, 0);
uint32_t nMASTVersion = 0;
size_t stacksize = witness.stack.size();
if (stacksize < 4)
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
std::vector<unsigned char> metadata = witness.stack.back(); // The last witness stack item is metadata
if (metadata.size() < 1 || metadata.size() > 5)
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
// The first byte of metadata is the number of subscripts (1 to 255)
uint32_t nSubscript = static_cast<uint32_t>(metadata[0]);
if (nSubscript == 0 || stacksize < nSubscript + 3)
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
int nOpCount = nSubscript; // Each condition consumes a nOpCount
sScriptHash << metadata[0];
// The rest of metadata is MAST version in minimally-coded unsigned little endian int
if (metadata.back() == 0)
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
if (metadata.size() > 1) {
for (size_t i = 1; i != metadata.size(); ++i)
nMASTVersion |= static_cast<uint32_t>(metadata[i]) << 8 * (i - 1);
}
// Unknown MAST version is non-standard
if (nMASTVersion > 0 && flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM)
return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM);
sRoot << nMASTVersion;
// The second last witness stack item is the pathdata
// Size of pathdata must be divisible by 32 (0 is allowed)
// Depth of the Merkle tree is implied by the size of pathdata, and must not be greater than 32
std::vector<unsigned char> pathdata = witness.stack.at(stacksize - 2);
if (pathdata.size() & 0x1F)
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
unsigned int depth = pathdata.size() >> 5;
if (depth > 32)
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
// Each level of Merkle tree consumes a nOpCount
// Evaluation of version 0 MAST terminates early if there are too many nOpCount
// Not enforced in unknown MAST version for upgrade flexibility
nOpCount = nOpCount + depth;
if (nMASTVersion == 0 && nOpCount > MAX_OPS_PER_SCRIPT)
return set_error(serror, SCRIPT_ERR_OP_COUNT);
// path is a vector of 32-byte hashes
std::vector <uint256> path;
path.resize(depth);
for (unsigned int j = 0; j < depth; j++)
memcpy(path[j].begin(), &pathdata[32 * j], 32);
// The third last witness stack item is the positiondata
// Position is in minimally-coded unsigned little endian int
std::vector<unsigned char> positiondata = witness.stack.at(stacksize - 3);
if (positiondata.size() > 4)
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
uint32_t position = 0;
if (positiondata.size() > 0) {
if (positiondata.back() == 0)
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
for (size_t k = 0; k != positiondata.size(); ++k)
position |= static_cast<uint32_t>(positiondata[k]) << 8 * k;
}
// Position value must not exceed the number of leaves at the depth
if (depth < 32) {
if (position >= (1U << depth))
return set_error(serror, SCRIPT_ERR_INVALID_MAST_STACK);
}
// Sub-scripts are located before positiondata
for (size_t i = stacksize - nSubscript - 3; i <= stacksize - 4; i++) {
CScript subscript(witness.stack.at(i).begin(), witness.stack.at(i).end());
// Evaluation of version 0 MAST terminates early if script is oversize
// Not enforced in unknown MAST version for upgrade flexibility
if (nMASTVersion == 0 && (scriptPubKey.size() + subscript.size()) > MAX_SCRIPT_SIZE)
return set_error(serror, SCRIPT_ERR_SCRIPT_SIZE);
uint256 hashSubScript;
CHash256().Write(&subscript[0], subscript.size()).Finalize(hashSubScript.begin());
sScriptHash << hashSubScript;
scriptPubKey = scriptPubKey + subscript; // Final scriptPubKey is a serialization of subscripts
}
uint256 hashScript = sScriptHash.GetHash();
// Calculate MAST Root and compare against witness program
uint256 rootScript = ComputeMerkleRootFromBranch(hashScript, path, position);
sRoot << rootScript;
uint256 rootMAST = sRoot.GetHash();
if (memcmp(rootMAST.begin(), &program[0], 32))
return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_MISMATCH);
if (nMASTVersion == 0) {
stack = std::vector<std::vector<unsigned char> >(witness.stack.begin(), witness.stack.end() - 3 - nSubscript);
for (unsigned int i = 0; i < stack.size(); i++) {
if (stack.at(i).size() > MAX_SCRIPT_ELEMENT_SIZE)
return set_error(serror, SCRIPT_ERR_PUSH_SIZE);
}
// Script evaluation must not fail, and return an empty stack
if (!EvalScript(stack, scriptPubKey, flags, checker, SIGVERSION_WITNESS_V1, nOpCount, serror))
return false;
if (stack.size() != 0)
return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
}
return set_success(serror);
}
Copying from src/consensus/merkle.cpp
:
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
uint256 hash = leaf;
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
if (nIndex & 1) {
hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash));
} else {
hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it));
}
nIndex >>= 1;
}
return hash;
}
This document is placed in the public domain.