-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpick_rep.py
156 lines (131 loc) · 4.87 KB
/
pick_rep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3
import os
import sys
import argparse
import pandas as pd
import numpy as np
from Bio import SeqIO
import concurrent.futures
def calc_n50(nl_list):
mid = sum(nl_list) * 0.5
n50 = 0
nl = 0
for i in sorted(nl_list)[::-1]:
nl += i
if nl >= mid:
return i
def calc_genome_stats(fasta_f):
total_bases_num = 0
ambiguous_bases_num = 0
contigs_num = 0
nl_list = []
n50 = 0
with SeqIO.parse(fasta_f, "fasta") as fah:
for record in fah:
contigs_num += 1
total_bases_num += len(record.seq)
nl_list.append(len(record.seq))
ambiguous_bases_num += record.seq.count("N") + \
record.seq.count("n")
return (fasta_f, total_bases_num, ambiguous_bases_num, contigs_num, calc_n50(nl_list))
def drep_score(x, comw, conw, strw, n50w, sizew):
'''
compute drep score
'''
score = (
comw * x["completeness"]
- conw * x["contamination"]
+ strw * x["contamination"] * (x["strain_heterogeneity"] / 100)
+ n50w * np.log10(x["N50"])
+ sizew * np.log10(x["size"])
)
return score
def galah_score(x):
'''
compute galah score
'''
score = x["completeness"] - 5 * x["contamination"] - 5 * \
x["contigs_num"] / 100 - 5 * x["ambiguous_bases_num"] / 100000
return score
def set_score(df, comw=1, conw=5, strw=1, n50w=1, sizew=1, **kwargs):
'''
Args:
df: pandas dataframe, genome info,
include header:
genome_path,
completeness,
contamination,
strain_heterogeneity,
N50, size, contigs_num, ambiguous_bases_num
Returns:
df: dataframe,
if set output, will save dataframe to output tsv file
'''
cancel = False
for i in ["genome_path", "completeness", "contamination", "strain_heterogeneity", "N50", "size", "contigs_num", "ambiguous_bases_num"]:
if i not in df.columns:
print(f"{i} not in dataframe headers, please check genome info file")
cancel = True
if cancel:
print("header error, exiting")
sys.exit()
df["drep_score"] = df.apply(lambda x: drep_score(
x, comw, conw, strw, n50w, sizew), axis=0)
df["galah_score"] = df.apply(lambda x: galah_score(x), axis=0)
df = df.sort_values(["drep_score", "galah_score"], ascending=False)
if ("output" in kwargs) and (kwars["output"] is not None):
df.to_csv(kwargs["output"], sep='\t', index=False)
return df
def set_stats(genome_info_file, threads=8):
'''
Args:
genome_info_file: .tsv format, genome info file,
include header:
genome_path,
completeness,
contamination,
strain_heterogeneity
Returns:
df: dataframe
'''
df = pd.read_csv(genome_info_file, sep='\t')
calc_stats = False
for col in ["N50", "size", "contigs_num", "ambiguous_bases_num"]:
if not col in df.columns:
calc_stats = True
if calc_stats:
stats_list = []
with concurrent.futures.ProcessPoolExecutor(max_workers=threads) as executor:
for stats_tuple in executor.map(calc_genome_stats, df["genome_path"].to_list()):
stats_list.append(stats_tuple)
df_stats = pd.DataFrame.from_records(stats_list, columns=[
"genome_path", "size", "ambiguous_bases_num", "contigs_num", "N50"])
df = df.merge(df_stats, how="inner")
return df
def main():
'''
a drep/galah wrapper for picking representative genome
'''
parser = argparse.ArgumentParser("pick representative genome")
parser.add_argument("-comw", dest="comw",
default=1, type=float, help="completeness weight, default: 1")
parser.add_argument("-conw", dest="conw",
default=5, type=float, help="contamination weight, default: 5")
parser.add_argument("-strw", dest="strw",
default=1, fype=float, help="strain heterogeneity weight, default: 1")
parser.add_argument("-n50w", dest="n50w",
default=1, fype=float, help="N50 weight, default: 1")
parser.add_argument("-sizew", dest="sizew",
default=1, fype=float, help="genome size weight, default: 1")
parser.add_argument("-t", dest="threads", default=8, type=int,
help="threads, used on calculate genomes stats")
parser.add_argument("-gi", dest="gi",
required=True, help="genome info, tsv format")
parser.add_argument("-o", dest="output", default=None,
help="output, default: None")
args = parser.parse_args()
df = set_stats(args.gi, args.threads)
set_score(df, ags.comw, args.conw, args.strw,
args.n50w, args.sizew, output=args.output)
if __name__ == "__main__":
main()