-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgptq_evaluate_gsm8k.py
139 lines (112 loc) · 4.2 KB
/
gptq_evaluate_gsm8k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import re
import torch
import argparse
import jsonlines
import numpy as np
import datasets
from datasets import load_from_disk, load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
ANS_RE = re.compile(r"#### (\-?[0-9\.\,]+)")
INVALID_ANS = "[invalid]"
def doc_to_text(doc):
return (
fewshot_prompt
+ "\nQuestion: "
+ doc["question"]
+ "\nLet's think step by step\n"
)
def decode(tokens_list, tokenizer, raw_text_len):
sents = []
# print(len(tokens_list))
for tokens in tokens_list:
tokens = tokens.cpu().numpy().tolist()
# sent = tokenizer.tokenizer.decode(tokens[raw_text_len:])
sent = tokenizer.decode(tokens[raw_text_len:])
sent = sent.split("<|endoftext|>")[0]
sent = sent.split("\n\n\n")[0]
sent = sent.split("\n\n")[0]
sent = sent.split("Question:")[0]
sents.append(sent)
return sents
def generate_sample(model, tokenizer, input_txt):
# input_ids = tokenizer.tokenizer.encode(input_txt)
input_ids = tokenizer.encode(input_txt)
raw_text_len = len(input_ids)
context_enc = torch.tensor([input_ids]).to(model.device)
print(f"Input text: {input_txt}\n")
outputs = model.generate(context_enc)
output_text = decode(outputs, tokenizer, raw_text_len)[0]
print(f"\nOutput text: {output_text}\n")
return output_text
def extract_answer_hf(completion):
match = ANS_RE.search(completion)
if match:
match_str = match.group(1).strip()
match_str = match_str.replace(",", "")
return eval(match_str)
else:
return INVALID_ANS
def extract_answer(completion):
try:
last_number = re.findall(r"\d+", completion)[-1]
return eval(last_number)
except:
return INVALID_ANS
def is_correct(completion, answer):
gold = extract_answer_hf(answer)
assert gold != INVALID_ANS, "No ground truth answer found in the document."
return extract_answer(completion) == gold
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Test HF checkpoint.")
parser.add_argument(
"-c",
"--checkpoint-path",
type=str,
help="Checkpoint path",
default="Qwen/Qwen-7B",
)
parser.add_argument("-f", "--sample-input-file", type=str, default=None)
# parser.add_argument("-f", "--sample-input-file", type=str, default="eval/gsm8k/")
parser.add_argument(
"-o", "--sample-output-file", type=str, default="eval/gsm8k/gsm8k_res.jsonl"
)
args = parser.parse_args()
fewshot_prompt = open("eval/gsm8k/gsm8k_prompt.txt").read()
if args.sample_input_file is not None:
dataset = load_from_disk(args.sample_input_file)
# dataset = load_dataset(args.sample_input_file, )
else:
config = datasets.DownloadConfig(resume_download=True, max_retries=100)
dataset = load_dataset("gsm8k", "main", download_config=config)
test = dataset["test"]
print("Loading tokenizer ...")
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True
)
print("Loading model ...")
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path, device_map="auto", trust_remote_code=True
).eval()
quantized_checkpoint_path = ""
model.load_state_dict(torch.load(quantized_checkpoint_path))
model.generation_config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True
)
model.generation_config.do_sample = False
f_output = jsonlines.Writer(open(args.sample_output_file, "w", encoding="utf-8"))
tot_length = test.num_rows
acc_res = []
for doc in test:
context = doc_to_text(doc)
completion = generate_sample(model, tokenizer, context)
answer = doc["answer"]
acc = is_correct(completion, answer)
doc["completion"] = completion
doc["acc"] = acc
f_output.write(doc)
acc_res.append(acc)
print("Current Acc: ", np.mean(acc_res))
f_output.close()
print("Total Acc: ", np.mean(acc_res))
# tokenizers>=0.13.3 is required for a normal functioning of this module, but found tokenizers==0.12.1.