-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_configs.py
25 lines (20 loc) · 1.45 KB
/
model_configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import json
# Note on the configurations: Not all optimizers need all parameters.
# They are included for easier usage in main.py
CONFIG_PATH = "./models/model_configs.json"
CONFIGS = {"Supervised_SGD": {"learning_manager": {"model_name": "Supervised_SGD", "encoder": "baseline"},
"training": {"epochs": 10, "batch_size": 32, "optimizer_name": "sgd", "lr": 0.005,
"momentum": 0.7, "weight_decay": 0, "alpha": 0.99, "eps": 1e-08,
"trust_coef": 0.001}},
"Supervised_RMS": {"learning_manager": {"model_name": "Supervised_RMS", "encoder": "baseline"},
"training": {"epochs": 10, "batch_size": 32, "optimizer_name": "rmsprop", "lr": 0.00005,
"momentum": 0, "weight_decay": 0, "alpha": 0.99, "eps": 1e-08,
"trust_coef": 0.001}},
"Supervised_LARS": {"learning_manager": {"model_name": "Supervised_LARS", "encoder": "baseline"},
"training": {"epochs": 10, "batch_size": 32, "optimizer_name": "lars", "lr": 0.005,
"momentum": 0.7, "weight_decay": 0, "alpha": 0.99, "eps": 1e-08,
"trust_coef": 0.00125}}
}
if __name__ == "__main__":
with open(CONFIG_PATH, 'w') as f:
json.dump(CONFIGS, f, indent=4)