-
Notifications
You must be signed in to change notification settings - Fork 36
/
dataset.py
492 lines (436 loc) · 18 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
from typing import Optional, Dict, Any, Tuple
import os
import os.path as osp
import numpy as np
import pandas as pd
import shutil
import zipfile
import requests
from clint.textui import progress
from tgb.utils.info import (
PROJ_DIR,
DATA_URL_DICT,
DATA_NUM_CLASSES,
DATA_VERSION_DICT,
DATA_EVAL_METRIC_DICT,
BColors,
)
from tgb.utils.utils import save_pkl, load_pkl
from tgb.utils.pre_process import (
load_label_dict,
load_edgelist_sr,
load_edgelist_token,
load_edgelist_datetime,
load_trade_label_dict,
load_edgelist_trade,
)
class NodePropPredDataset(object):
def __init__(
self,
name: str,
root: Optional[str] = "datasets",
meta_dict: Optional[dict] = None,
preprocess: Optional[bool] = True,
) -> None:
r"""Dataset class for the node property prediction task. Stores meta information about each dataset such as evaluation metrics etc.
also automatically pre-processes the dataset.
[!] node property prediction datasets requires the following:
self.meta_dict["fname"]: path to the edge list file
self.meta_dict["nodefile"]: path to the node label file
Parameters:
name: name of the dataset
root: root directory to store the dataset folder
meta_dict: dictionary containing meta information about the dataset, should contain key 'dir_name' which is the name of the dataset folder
preprocess: whether to pre-process the dataset
Returns:
None
"""
self.name = name ## original name
# check if dataset url exist
if self.name in DATA_URL_DICT:
self.url = DATA_URL_DICT[self.name]
else:
self.url = None
print(f"Dataset {self.name} url not found, download not supported yet.")
# check if the evaluatioin metric are specified
if self.name in DATA_EVAL_METRIC_DICT:
self.metric = DATA_EVAL_METRIC_DICT[self.name]
else:
self.metric = None
print(
f"Dataset {self.name} default evaluation metric not found, it is not supported yet."
)
root = PROJ_DIR + root
if meta_dict is None:
self.dir_name = "_".join(name.split("-")) ## replace hyphen with underline
meta_dict = {"dir_name": self.dir_name}
else:
self.dir_name = meta_dict["dir_name"]
self.root = osp.join(root, self.dir_name)
self.meta_dict = meta_dict
if "fname" not in self.meta_dict:
self.meta_dict["fname"] = self.root + "/" + self.name + "_edgelist.csv"
self.meta_dict["nodefile"] = self.root + "/" + self.name + "_node_labels.csv"
#! version check
self.version_passed = True
self._version_check()
self._num_classes = DATA_NUM_CLASSES[self.name]
# initialize
self._node_feat = None
self._edge_feat = None
self._full_data = None
self.download()
# check if the root directory exists, if not create it
if osp.isdir(self.root):
print("Dataset directory is ", self.root)
else:
raise FileNotFoundError(f"Directory not found at {self.root}")
if preprocess:
self.pre_process()
self.label_ts_idx = 0 # index for which node lables to return now
def _version_check(self) -> None:
r"""Implement Version checks for dataset files
updates the file names based on the current version number
prompt the user to download the new version via self.version_passed variable
"""
if (self.name in DATA_VERSION_DICT):
version = DATA_VERSION_DICT[self.name]
else:
print(f"Dataset {self.name} version number not found.")
self.version_passed = False
return None
if (version > 1):
#* check if current version is outdated
self.meta_dict["fname"] = self.root + "/" + self.name + "_edgelist_v" + str(int(version)) + ".csv"
self.meta_dict["nodefile"] = self.root + "/" + self.name + "_node_labels_v" + str(int(version)) + ".csv"
if (not osp.exists(self.meta_dict["fname"])):
print(f"Dataset {self.name} version {int(version)} not found.")
print(f"Please download the latest version of the dataset.")
self.version_passed = False
return None
def download(self) -> None:
r"""
downloads this dataset from url
check if files are already downloaded
Returns:
None
"""
# check if the file already exists
if osp.exists(self.meta_dict["fname"]) and osp.exists(
self.meta_dict["nodefile"]
):
print("raw file found, skipping download")
return
else:
inp = input(
"Will you download the dataset(s) now? (y/N)\n"
).lower() # ask if the user wants to download the dataset
if inp == "y":
print(
f"{BColors.WARNING}Download started, this might take a while . . . {BColors.ENDC}"
)
print(f"Dataset title: {self.name}")
if self.url is None:
raise Exception(
"Dataset url not found, download not supported yet."
)
else:
r = requests.get(self.url, stream=True)
if osp.isdir(self.root):
print("Dataset directory is ", self.root)
else:
os.makedirs(self.root)
path_download = self.root + "/" + self.name + ".zip"
with open(path_download, "wb") as f:
total_length = int(r.headers.get("content-length"))
for chunk in progress.bar(
r.iter_content(chunk_size=1024),
expected_size=(total_length / 1024) + 1,
):
if chunk:
f.write(chunk)
f.flush()
# for unzipping the file
with zipfile.ZipFile(path_download, "r") as zip_ref:
zip_ref.extractall(self.root)
print(f"{BColors.OKGREEN}Download completed {BColors.ENDC}")
else:
raise Exception(
BColors.FAIL
+ "Data not found error, download "
+ self.name
+ " failed"
)
def generate_processed_files(
self,
) -> Tuple[pd.DataFrame, Dict[int, Dict[str, Any]]]:
r"""
returns an edge list of pandas data frame
Returns:
df: pandas data frame storing the temporal edge list
node_label_dict: dictionary with key as timestamp and item as dictionary of node labels
"""
OUT_DF = self.root + "/" + "ml_{}.pkl".format(self.name)
OUT_NODE_DF = self.root + "/" + "ml_{}_node.pkl".format(self.name)
OUT_LABEL_DF = self.root + "/" + "ml_{}_label.pkl".format(self.name)
OUT_EDGE_FEAT = self.root + "/" + "ml_{}.pkl".format(self.name + "_edge")
# * logic for large datasets, as node label file is too big to store on disc
if self.name == "tgbn-reddit" or self.name == "tgbn-token":
if osp.exists(OUT_DF) and osp.exists(OUT_NODE_DF) and osp.exists(OUT_EDGE_FEAT):
df = pd.read_pickle(OUT_DF)
edge_feat = load_pkl(OUT_EDGE_FEAT)
if (self.name == "tgbn-token"):
#! taking log normalization for numerical stability
print ("applying log normalization for weights in tgbn-token")
edge_feat[:,0] = np.log(edge_feat[:,0])
node_ids = load_pkl(OUT_NODE_DF)
labels_dict = load_pkl(OUT_LABEL_DF)
node_label_dict = load_label_dict(
self.meta_dict["nodefile"], node_ids, labels_dict
)
return df, node_label_dict, edge_feat
# * load the preprocessed file if possible
if osp.exists(OUT_DF) and osp.exists(OUT_NODE_DF) and osp.exists(OUT_EDGE_FEAT):
print("loading processed file")
df = pd.read_pickle(OUT_DF)
node_label_dict = load_pkl(OUT_NODE_DF)
edge_feat = load_pkl(OUT_EDGE_FEAT)
else: # * process the file
print("file not processed, generating processed file")
if self.name == "tgbn-reddit":
df, edge_feat, node_ids, labels_dict = load_edgelist_sr(
self.meta_dict["fname"], label_size=self._num_classes
)
elif self.name == "tgbn-token":
df, edge_feat, node_ids, labels_dict = load_edgelist_token(
self.meta_dict["fname"], label_size=self._num_classes
)
elif self.name == "tgbn-genre":
df, edge_feat, node_ids, labels_dict = load_edgelist_datetime(
self.meta_dict["fname"], label_size=self._num_classes
)
elif self.name == "tgbn-trade":
df, edge_feat, node_ids = load_edgelist_trade(
self.meta_dict["fname"], label_size=self._num_classes
)
df.to_pickle(OUT_DF)
save_pkl(edge_feat, OUT_EDGE_FEAT)
if self.name == "tgbn-trade":
node_label_dict = load_trade_label_dict(
self.meta_dict["nodefile"], node_ids
)
else:
node_label_dict = load_label_dict(
self.meta_dict["nodefile"], node_ids, labels_dict
)
if (
self.name != "tgbn-reddit" and self.name != "tgbn-token"
): # don't save subreddits on disc, the node label file is too big
save_pkl(node_label_dict, OUT_NODE_DF)
else:
save_pkl(node_ids, OUT_NODE_DF)
save_pkl(labels_dict, OUT_LABEL_DF)
print("file processed and saved")
return df, node_label_dict, edge_feat
def pre_process(self) -> None:
"""
Pre-process the dataset and generates the splits, must be run before dataset properties can be accessed
Returns:
None
"""
# first check if all files exist
if ("fname" not in self.meta_dict) or ("nodefile" not in self.meta_dict):
raise Exception("meta_dict does not contain all required filenames")
df, node_label_dict, edge_feat = self.generate_processed_files()
sources = np.array(df["u"])
destinations = np.array(df["i"])
timestamps = np.array(df["ts"])
edge_idxs = np.array(df["idx"])
edge_label = np.ones(sources.shape[0])
#self._edge_feat = np.array(df["w"])
self._edge_feat = edge_feat
full_data = {
"sources": sources,
"destinations": destinations,
"timestamps": timestamps,
"edge_idxs": edge_idxs,
"edge_feat": self._edge_feat,
"edge_label": edge_label,
}
self._full_data = full_data
# storing the split masks
_train_mask, _val_mask, _test_mask = self.generate_splits(full_data)
self._train_mask = _train_mask
self._val_mask = _val_mask
self._test_mask = _test_mask
self.label_dict = node_label_dict
self.label_ts = np.array(list(node_label_dict.keys()))
self.label_ts = np.sort(self.label_ts)
def generate_splits(
self,
full_data: Dict[str, Any],
val_ratio: float = 0.15,
test_ratio: float = 0.15,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
r"""
Generates train, validation, and test splits from the full dataset
Parameters:
full_data: dictionary containing the full dataset
val_ratio: ratio of validation data
test_ratio: ratio of test data
Returns:
train_mask: boolean mask for training data
val_mask: boolean mask for validation data
test_mask: boolean mask for test data
"""
val_time, test_time = list(
np.quantile(
full_data["timestamps"],
[(1 - val_ratio - test_ratio), (1 - test_ratio)],
)
)
timestamps = full_data["timestamps"]
train_mask = timestamps <= val_time
val_mask = np.logical_and(timestamps <= test_time, timestamps > val_time)
test_mask = timestamps > test_time
return train_mask, val_mask, test_mask
def find_next_labels_batch(
self,
cur_t: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
r"""
this returns the node labels closest to cur_t (for that given day)
Parameters:
cur_t: current timestamp of the batch of edges
Returns:
ts: timestamp of the node labels
source_idx: node ids
labels: the stacked label vectors
"""
if self.label_ts_idx >= (self.label_ts.shape[0]):
# for query that are after the last batch of labels
return None
else:
ts = self.label_ts[self.label_ts_idx]
if cur_t >= ts:
self.label_ts_idx += 1 # move to the next ts
# {ts: {node_id: label_vec}}
node_ids = np.array(list(self.label_dict[ts].keys()))
node_labels = []
for key in self.label_dict[ts]:
node_labels.append(np.array(self.label_dict[ts][key]))
node_labels = np.stack(node_labels, axis=0)
label_ts = np.full(node_ids.shape[0], ts, dtype="int")
return (label_ts, node_ids, node_labels)
else:
return None
def reset_label_time(self) -> None:
r"""
reset the pointer for node label once the entire dataset has been iterated once
Returns:
None
"""
self.label_ts_idx = 0
def return_label_ts(self) -> int:
"""
return the current label timestamp that the pointer is at
Returns:
ts: int, the timestamp of the node labels
"""
if (self.label_ts_idx >= self.label_ts.shape[0]):
return self.label_ts[-1]
else:
return self.label_ts[self.label_ts_idx]
@property
def num_classes(self) -> int:
"""
number of classes in the node label
Returns:
num_classes: int, number of classes
"""
return self._num_classes
@property
def eval_metric(self) -> str:
"""
the official evaluation metric for the dataset, loaded from info.py
Returns:
eval_metric: str, the evaluation metric
"""
return self.metric
# TODO not sure needed, to be removed
@property
def node_feat(self) -> Optional[np.ndarray]:
r"""
Returns the node features of the dataset with dim [N, feat_dim]
Returns:
node_feat: np.ndarray, [N, feat_dim] or None if there is no node feature
"""
return self._node_feat
# TODO not sure needed, to be removed
@property
def edge_feat(self) -> Optional[np.ndarray]:
r"""
Returns the edge features of the dataset with dim [E, feat_dim]
Returns:
edge_feat: np.ndarray, [E, feat_dim] or None if there is no edge feature
"""
return self._edge_feat
@property
def full_data(self) -> Dict[str, Any]:
r"""
the full data of the dataset as a dictionary with keys: 'sources', 'destinations', 'timestamps', 'edge_idxs', 'edge_feat', 'w', 'edge_label',
Returns:
full_data: Dict[str, Any]
"""
if self._full_data is None:
raise ValueError(
"dataset has not been processed yet, please call pre_process() first"
)
return self._full_data
@property
def train_mask(self) -> np.ndarray:
r"""
Returns the train mask of the dataset
Returns:
train_mask
"""
if self._train_mask is None:
raise ValueError("training split hasn't been loaded")
return self._train_mask
@property
def val_mask(self) -> np.ndarray:
r"""
Returns the validation mask of the dataset
Returns:
val_mask: Dict[str, Any]
"""
if self._val_mask is None:
raise ValueError("validation split hasn't been loaded")
return self._val_mask
@property
def test_mask(self) -> np.ndarray:
r"""
Returns the test mask of the dataset:
Returns:
test_mask: Dict[str, Any]
"""
if self._test_mask is None:
raise ValueError("test split hasn't been loaded")
return self._test_mask
def main():
# download files
name = "tgbn-trade"
dataset = NodePropPredDataset(name=name, root="datasets", preprocess=True)
dataset.node_feat
dataset.edge_feat # not the edge weights
dataset.full_data
dataset.full_data["edge_idxs"]
dataset.full_data["sources"]
dataset.full_data["destinations"]
dataset.full_data["timestamps"]
dataset.full_data["y"]
train_data = dataset.full_data[dataset.train_mask]
val_data = dataset.full_data[dataset.val_mask]
test_data = dataset.full_data[dataset.test_mask]
if __name__ == "__main__":
main()