-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmyoAnalysis.py
executable file
·209 lines (188 loc) · 6.97 KB
/
myoAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# -*- coding: utf-8 -*-
#一些常用的数据处理的函数
#数据储存
#数据特征提取
import numpy as np
import math
def ZCR(data):
# 输入是numpy的一维数组
# 输出是过零率
zcrSum=0
len=np.size(data)
for i in range(len):
if i>=1:
result=np.abs(np.sign(data[i])-np.sign(data[i-1]))
zcrSum=zcrSum+result
return zcrSum
def fetureGet(emgData,imuData):
#初始参数
frq=50 #频率50Hz
#数据预处理,归一化,无量纲化
#转成数组
emgData=np.array(emgData)
imuData=np.array(imuData)
# emgRow=emgData.size/8
# imuRow=imuData.size/6
accX=imuData[:,0]
accY=imuData[:,1]
accZ=imuData[:,2]
gcoX=imuData[:,3]
gcoY=imuData[:,4]
gcoZ=imuData[:,5]
emg1=emgData[:,0]
emg2 = emgData[:, 1]
emg3 = emgData[:, 2]
emg4 = emgData[:, 3]
emg5 = emgData[:, 4]
emg6 = emgData[:, 5]
emg7 = emgData[:, 6]
emg8 = emgData[:, 7]
acc=np.sqrt(accX**2+accY**2+accZ**2)
#特征提取
# 了解一下各个参数的物理意义呢?这样就可以转换
#是不是某一类的特征多,他就会占据主要地位,就算其他变量很有用,影响也会被消除
#差分
diffAccX=np.diff(accX)
diffAccY=np.diff(accY)
diffAccZ=np.diff(accZ)
gco=np.sqrt(gcoX**2+gcoY**2+gcoZ**2)
diffGcoX=np.diff(gcoX)
diffGcoY=np.diff(gcoY)
diffGcoZ=np.diff(gcoZ)
#均值
meanAccX=np.mean(accX)
meanAccY=np.mean(accY)
meanAccZ=np.mean(accZ)
meanGcoX=np.mean(np.abs(gcoX))
meanGcoY=np.mean(np.abs(gcoY))
meanGcoZ=np.mean(np.abs(gcoZ))
meanDiffAccX=np.mean(np.abs(diffAccX))
meanDiffAccY = np.mean(np.abs(diffAccY))
meanDiffAccZ = np.mean(np.abs(diffAccZ))
meanDiffGcoX=np.mean(np.abs(diffGcoX))
meanDiffGcoY = np.mean(np.abs(diffGcoY))
meanDiffGcoZ = np.mean(np.abs(diffGcoZ))
#均方值
rmsAccX=np.sqrt(np.mean(accX**2))
rmsAccY=np.sqrt(np.mean(accY**2))
rmsAccZ=np.sqrt(np.mean(accZ**2))
rmsAcc=np.sqrt(np.mean(acc**2))
rmsGcoX=np.sqrt(np.mean(gcoX**2))
rmsGcoY=np.sqrt(np.mean(gcoY**2))
rmsGcoZ=np.sqrt(np.mean(gcoZ**2))
#积分
integralAccX=np.sum(accX)*1/frq
integralAccY=np.sum(accY)*1/frq
integralAccZ=np.sum(accZ)*1/frq
#范围
rangeAccX=np.max(accX)-np.min(accX)
rangeAccY=np.max(accY)-np.min(accY)
rangeGcoX=np.max(gcoX)-np.min(gcoX)
rangeGcoY=np.max(gcoX)-np.min(gcoY)
rangeGcoZ=np.max(gcoX)-np.min(gcoZ)
#过零率
gcoXZCR=ZCR(gcoX)
gcoYZCR=ZCR(gcoY)
gcoZZCR=ZCR(gcoZ)
#均值
meanEmg1=np.mean(emg1)
meanEmg2 = np.mean(emg2)
meanEmg3 = np.mean(emg3)
meanEmg4 = np.mean(emg4)
meanEmg5 = np.mean(emg5)
meanEmg6 = np.mean(emg6)
meanEmg7 = np.mean(emg7)
meanEmg8 = np.mean(emg8)
#
rmsEmg1=np.mean(emg1)
rmsEmg2 = np.sqrt(np.mean(emg2**2))
rmsEmg3 = np.sqrt(np.mean(emg3**2))
rmsEmg4 = np.sqrt(np.mean(emg4**2))
rmsEmg5 = np.sqrt(np.mean(emg5**2))
rmsEmg6 = np.sqrt(np.mean(emg6**2))
rmsEmg7 = np.sqrt(np.mean(emg7**2))
rmsEmg8 = np.sqrt(np.mean(emg8**2))
feature=[]
feature.append(meanAccX);feature.append(meanAccY);feature.append(meanAccZ)
# feature.append(meanGcoX);feature.append(meanGcoY);feature.append(meanGcoZ)
feature.append(rmsAccX);feature.append(rmsAccY);feature.append(rmsAccZ)
feature.append(rmsGcoX);feature.append(rmsGcoY);feature.append(rmsGcoZ)
feature.append(integralAccX);feature.append(integralAccY);feature.append(integralAccZ)
feature.append(rangeAccX);feature.append(rangeAccY)
feature.append(rangeGcoX);feature.append(rangeGcoY);feature.append(rangeGcoZ)
# feature.append(meanDiffAccX);feature.append(meanDiffAccY);feature.append(meanDiffAccZ)
# feature.append(meanDiffGcoX);feature.append(meanDiffGcoY);feature.append(meanDiffGcoZ)
feature.append(gcoXZCR);feature.append(gcoYZCR);feature.append(gcoZZCR)
feature.append(meanEmg1)
feature.append(meanEmg2)
feature.append(meanEmg3)
feature.append(meanEmg4)
feature.append(meanEmg5)
feature.append(meanEmg6)
feature.append(meanEmg7)
feature.append(meanEmg8)
# feature.append(rmsEmg1)
# feature.append(rmsEmg2)
# feature.append(rmsEmg3)
# feature.append(rmsEmg4)
# feature.append(rmsEmg5)
# feature.append(rmsEmg6)
# feature.append(rmsEmg7)
# feature.append(rmsEmg8)
#
#
# feature.append(meanAccX);feature.append(meanAccY);feature.append(meanAccZ)
# # feature.append(meanGcoX);feature.append(meanGcoY);feature.append(meanGcoZ)
# feature.append(rmsAccX);feature.append(rmsAccY);feature.append(rmsAccZ)
# feature.append(rmsGcoX);feature.append(rmsGcoY);feature.append(rmsGcoZ)
# feature.append(integralAccX);feature.append(integralAccY);feature.append(integralAccZ)
# feature.append(rangeAccX);feature.append(rangeAccY)
# feature.append(rangeGcoX);feature.append(rangeGcoY);feature.append(rangeGcoZ)
# # feature.append(meanDiffAccX);feature.append(meanDiffAccY);feature.append(meanDiffAccZ)
# # feature.append(meanDiffGcoX);feature.append(meanDiffGcoY);feature.append(meanDiffGcoZ)
# feature.append(gcoXZCR);feature.append(gcoYZCR);feature.append(gcoZZCR)
# feature.append(meanEmg1)
# feature.append(meanEmg2)
# feature.append(meanEmg3)
# feature.append(meanEmg4)
# feature.append(meanEmg5)
# feature.append(meanEmg6)
# feature.append(meanEmg7)
# feature.append(meanEmg8)
# feature.append(rmsEmg1)
# feature.append(rmsEmg2)
# feature.append(rmsEmg3)
# feature.append(rmsEmg4)
# feature.append(rmsEmg5)
# feature.append(rmsEmg6)
# feature.append(rmsEmg7)
# feature.append(rmsEmg8)
return feature
import xlwt
#xlwt只能储存float数据
def testXlwt(file='new.xls', dataArray=[]):
book = xlwt.Workbook() # 创建一个Excel
sheet1 = book.add_sheet('hello') # 在其中创建一个名为hello的sheet
for i in range(len(dataArray)): # 行数
for j in range(len(dataArray[i])): # 列数
sheet1.write(i, j, float(dataArray[i][j]))
book.save(file) # 创建保存文件
#测试excle文件生成dict且储存
import xlrd
import pickle
#根据名称获取Excel表格中的数据 参数:file:Excel文件路径 colnameindex:表头列名所在行的所以 ,by_name:Sheet1名称
def excelToDict(file,colnameindex=0,by_name=u'Sheet1'):
data = xlrd.open_workbook(file)
table = data.sheet_by_name(by_name)
colnames = table.row_values(colnameindex)
nrows = table.nrows
dict = {}
for rownum in range(0,nrows):
row = table.row_values(rownum)
if row:
keyName = int(row[0])
value = row[1]
if isinstance(value ,float):
value=int(value)
dict[keyName]=value
return dict