-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtiled_vae.py
867 lines (746 loc) · 34.4 KB
/
tiled_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
'''
# ------------------------------------------------------------------------
#
# Tiled VAE
#
# Introducing a revolutionary new optimization designed to make
# the VAE work with giant images on limited VRAM!
# Say goodbye to the frustration of OOM and hello to seamless output!
#
# ------------------------------------------------------------------------
#
# This script is a wild hack that splits the image into tiles,
# encodes each tile separately, and merges the result back together.
#
# Advantages:
# - The VAE can now work with giant images on limited VRAM
# (~10 GB for 8K images!)
# - The merged output is completely seamless without any post-processing.
#
# Drawbacks:
# - NaNs always appear in for 8k images when you use fp16 (half) VAE
# You must use --no-half-vae to disable half VAE for that giant image.
# - The gradient calculation is not compatible with this hack. It
# will break any backward() or torch.autograd.grad() that passes VAE.
# (But you can still use the VAE to generate training data.)
#
# How it works:
# 1. The image is split into tiles, which are then padded with 11/32 pixels' in the decoder/encoder.
# 2. When Fast Mode is disabled:
# 1. The original VAE forward is decomposed into a task queue and a task worker, which starts to process each tile.
# 2. When GroupNorm is needed, it suspends, stores current GroupNorm mean and var, send everything to RAM, and turns to the next tile.
# 3. After all GroupNorm means and vars are summarized, it applies group norm to tiles and continues.
# 4. A zigzag execution order is used to reduce unnecessary data transfer.
# 3. When Fast Mode is enabled:
# 1. The original input is downsampled and passed to a separate task queue.
# 2. Its group norm parameters are recorded and used by all tiles' task queues.
# 3. Each tile is separately processed without any RAM-VRAM data transfer.
# 4. After all tiles are processed, tiles are written to a result buffer and returned.
# Encoder color fix = only estimate GroupNorm before downsampling, i.e., run in a semi-fast mode.
#
# Enjoy!
#
# @Author: LI YI @ Nanyang Technological University - Singapore
# @Date: 2023-03-02
# @License: CC BY-NC-SA 4.0
#
# Please give https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111
# a star if you like the project!
#
# -------------------------------------------------------------------------
'''
import gc
import math
from time import time
from tqdm import tqdm
import torch
import torch.version
import torch.nn.functional as F
# import gradio as gr
# import modules.scripts as scripts
# from .modules import devices
# from modules.shared import state
# from modules.ui import gr_show
# from modules.processing import opt_f
# from modules.sd_vae_approx import cheap_approximation
# from ldm.modules.diffusionmodules.model import AttnBlock, MemoryEfficientAttnBlock
# from tile_utils.attn import get_attn_func
# from tile_utils.typing import Processing
import comfy
import comfy.model_management
from comfy.model_management import processing_interrupted
import contextlib
opt_C = 4
opt_f = 8
is_sdxl = False
disable_nan_check = True
class Device: ...
devices = Device()
devices.device = comfy.model_management.get_torch_device()
devices.cpu = torch.device('cpu')
devices.torch_gc = lambda: comfy.model_management.soft_empty_cache()
devices.get_optimal_device = lambda: comfy.model_management.get_torch_device()
class NansException(Exception): ...
def test_for_nans(x, where):
if disable_nan_check:
return
if not torch.all(torch.isnan(x)).item():
return
if where == "unet":
message = "A tensor with all NaNs was produced in Unet."
if comfy.model_management.unet_dtype(x.device) != torch.float32:
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this."
elif where == "vae":
message = "A tensor with all NaNs was produced in VAE."
if comfy.model_management.unet_dtype(x.device) != torch.float32 and comfy.model_management.vae_dtype() != torch.float32:
message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this."
else:
message = "A tensor with all NaNs was produced."
message += " Use --disable-nan-check commandline argument to disable this check."
raise NansException(message)
def _autocast(disable=False):
if disable:
return contextlib.nullcontext()
if comfy.model_management.unet_dtype() == torch.float32 or comfy.model_management.get_torch_device() == torch.device("mps"): # or shared.cmd_opts.precision == "full":
return contextlib.nullcontext()
# only cuda
autocast_device = comfy.model_management.get_autocast_device(comfy.model_management.get_torch_device())
return torch.autocast(autocast_device)
def without_autocast(disable=False):
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()
devices.test_for_nans = test_for_nans
devices.autocast = _autocast
devices.without_autocast = without_autocast
def cheap_approximation(sample):
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
if is_sdxl:
coeffs = [
[ 0.3448, 0.4168, 0.4395],
[-0.1953, -0.0290, 0.0250],
[ 0.1074, 0.0886, -0.0163],
[-0.3730, -0.2499, -0.2088],
]
else:
coeffs = [
[ 0.298, 0.207, 0.208],
[ 0.187, 0.286, 0.173],
[-0.158, 0.189, 0.264],
[-0.184, -0.271, -0.473],
]
coefs = torch.tensor(coeffs).to(sample.device)
x_sample = torch.einsum("...lxy,lr -> ...rxy", sample, coefs)
return x_sample
def get_rcmd_enc_tsize():
if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]:
total_memory = torch.cuda.get_device_properties(devices.device).total_memory // 2**20
if total_memory > 16*1000: ENCODER_TILE_SIZE = 3072
elif total_memory > 12*1000: ENCODER_TILE_SIZE = 2048
elif total_memory > 8*1000: ENCODER_TILE_SIZE = 1536
else: ENCODER_TILE_SIZE = 960
else: ENCODER_TILE_SIZE = 512
return ENCODER_TILE_SIZE
def get_rcmd_dec_tsize():
if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]:
total_memory = torch.cuda.get_device_properties(devices.device).total_memory // 2**20
if total_memory > 30*1000: DECODER_TILE_SIZE = 256
elif total_memory > 16*1000: DECODER_TILE_SIZE = 192
elif total_memory > 12*1000: DECODER_TILE_SIZE = 128
elif total_memory > 8*1000: DECODER_TILE_SIZE = 96
else: DECODER_TILE_SIZE = 64
else: DECODER_TILE_SIZE = 64
return DECODER_TILE_SIZE
def inplace_nonlinearity(x):
# Test: fix for Nans
return F.silu(x, inplace=True)
def _attn_forward(self, x):
# From comfy.Idm.modules.diffusionmodules.model.AttnBlock.forward
# However, the residual & normalization are removed and computed separately.
h_ = x
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
h_ = self.optimized_attention(q, k, v)
h_ = self.proj_out(h_)
return h_
def get_attn_func():
return _attn_forward
def attn2task(task_queue, net):
attn_forward = get_attn_func()
task_queue.append(('store_res', lambda x: x))
task_queue.append(('pre_norm', net.norm))
task_queue.append(('attn', lambda x, net=net: attn_forward(net, x)))
task_queue.append(['add_res', None])
def resblock2task(queue, block):
"""
Turn a ResNetBlock into a sequence of tasks and append to the task queue
@param queue: the target task queue
@param block: ResNetBlock
"""
if block.in_channels != block.out_channels:
if block.use_conv_shortcut:
queue.append(('store_res', block.conv_shortcut))
else:
queue.append(('store_res', block.nin_shortcut))
else:
queue.append(('store_res', lambda x: x))
queue.append(('pre_norm', block.norm1))
queue.append(('silu', inplace_nonlinearity))
queue.append(('conv1', block.conv1))
queue.append(('pre_norm', block.norm2))
queue.append(('silu', inplace_nonlinearity))
queue.append(('conv2', block.conv2))
queue.append(['add_res', None])
def build_sampling(task_queue, net, is_decoder):
"""
Build the sampling part of a task queue
@param task_queue: the target task queue
@param net: the network
@param is_decoder: currently building decoder or encoder
"""
if is_decoder:
resblock2task(task_queue, net.mid.block_1)
attn2task(task_queue, net.mid.attn_1)
resblock2task(task_queue, net.mid.block_2)
resolution_iter = reversed(range(net.num_resolutions))
block_ids = net.num_res_blocks + 1
condition = 0
module = net.up
func_name = 'upsample'
else:
resolution_iter = range(net.num_resolutions)
block_ids = net.num_res_blocks
condition = net.num_resolutions - 1
module = net.down
func_name = 'downsample'
for i_level in resolution_iter:
for i_block in range(block_ids):
resblock2task(task_queue, module[i_level].block[i_block])
if i_level != condition:
task_queue.append((func_name, getattr(module[i_level], func_name)))
if not is_decoder:
resblock2task(task_queue, net.mid.block_1)
attn2task(task_queue, net.mid.attn_1)
resblock2task(task_queue, net.mid.block_2)
def build_task_queue(net, is_decoder):
"""
Build a single task queue for the encoder or decoder
@param net: the VAE decoder or encoder network
@param is_decoder: currently building decoder or encoder
@return: the task queue
"""
task_queue = []
task_queue.append(('conv_in', net.conv_in))
# construct the sampling part of the task queue
# because encoder and decoder share the same architecture, we extract the sampling part
build_sampling(task_queue, net, is_decoder)
if not is_decoder or not net.give_pre_end:
task_queue.append(('pre_norm', net.norm_out))
task_queue.append(('silu', inplace_nonlinearity))
task_queue.append(('conv_out', net.conv_out))
if is_decoder and net.tanh_out:
task_queue.append(('tanh', torch.tanh))
return task_queue
def clone_task_queue(task_queue):
"""
Clone a task queue
@param task_queue: the task queue to be cloned
@return: the cloned task queue
"""
return [[item for item in task] for task in task_queue]
def get_var_mean(input, num_groups, eps=1e-6):
"""
Get mean and var for group norm
"""
b, c = input.size(0), input.size(1)
channel_in_group = int(c/num_groups)
input_reshaped = input.contiguous().view(1, int(b * num_groups), channel_in_group, *input.size()[2:])
var, mean = torch.var_mean(input_reshaped, dim=[0, 2, 3, 4], unbiased=False)
return var, mean
def custom_group_norm(input, num_groups, mean, var, weight=None, bias=None, eps=1e-6):
"""
Custom group norm with fixed mean and var
@param input: input tensor
@param num_groups: number of groups. by default, num_groups = 32
@param mean: mean, must be pre-calculated by get_var_mean
@param var: var, must be pre-calculated by get_var_mean
@param weight: weight, should be fetched from the original group norm
@param bias: bias, should be fetched from the original group norm
@param eps: epsilon, by default, eps = 1e-6 to match the original group norm
@return: normalized tensor
"""
b, c = input.size(0), input.size(1)
channel_in_group = int(c/num_groups)
input_reshaped = input.contiguous().view(
1, int(b * num_groups), channel_in_group, *input.size()[2:])
out = F.batch_norm(input_reshaped, mean.to(input), var.to(input), weight=None, bias=None, training=False, momentum=0, eps=eps)
out = out.view(b, c, *input.size()[2:])
# post affine transform
if weight is not None:
out *= weight.view(1, -1, 1, 1)
if bias is not None:
out += bias.view(1, -1, 1, 1)
return out
def crop_valid_region(x, input_bbox, target_bbox, is_decoder):
"""
Crop the valid region from the tile
@param x: input tile
@param input_bbox: original input bounding box
@param target_bbox: output bounding box
@param scale: scale factor
@return: cropped tile
"""
padded_bbox = [i * 8 if is_decoder else i//8 for i in input_bbox]
margin = [target_bbox[i] - padded_bbox[i] for i in range(4)]
return x[:, :, margin[2]:x.size(2)+margin[3], margin[0]:x.size(3)+margin[1]]
# ↓↓↓ https://github.com/Kahsolt/stable-diffusion-webui-vae-tile-infer ↓↓↓
def perfcount(fn):
def wrapper(*args, **kwargs):
ts = time()
if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]:
torch.cuda.reset_peak_memory_stats(devices.device)
devices.torch_gc()
gc.collect()
ret = fn(*args, **kwargs)
devices.torch_gc()
gc.collect()
if torch.cuda.is_available() and devices.device not in ['cpu', devices.cpu]:
vram = torch.cuda.max_memory_allocated(devices.device) / 2**20
print(f'[Tiled VAE]: Done in {time() - ts:.3f}s, max VRAM alloc {vram:.3f} MB')
else:
print(f'[Tiled VAE]: Done in {time() - ts:.3f}s')
return ret
return wrapper
# ↑↑↑ https://github.com/Kahsolt/stable-diffusion-webui-vae-tile-infer ↑↑↑
class GroupNormParam:
def __init__(self):
self.var_list = []
self.mean_list = []
self.pixel_list = []
self.weight = None
self.bias = None
def add_tile(self, tile, layer):
var, mean = get_var_mean(tile, 32)
# For giant images, the variance can be larger than max float16
# In this case we create a copy to float32
if var.dtype == torch.float16 and var.isinf().any():
fp32_tile = tile.float()
var, mean = get_var_mean(fp32_tile, 32)
# ============= DEBUG: test for infinite =============
# if torch.isinf(var).any():
# print('[Tiled VAE]: inf test', var)
# ====================================================
self.var_list.append(var)
self.mean_list.append(mean)
self.pixel_list.append(
tile.shape[2]*tile.shape[3])
if hasattr(layer, 'weight'):
self.weight = layer.weight
self.bias = layer.bias
else:
self.weight = None
self.bias = None
def summary(self):
"""
summarize the mean and var and return a function
that apply group norm on each tile
"""
if len(self.var_list) == 0: return None
var = torch.vstack(self.var_list)
mean = torch.vstack(self.mean_list)
max_value = max(self.pixel_list)
pixels = torch.tensor(self.pixel_list, dtype=torch.float32, device=devices.device) / max_value
sum_pixels = torch.sum(pixels)
pixels = pixels.unsqueeze(1) / sum_pixels
var = torch.sum(var * pixels, dim=0)
mean = torch.sum(mean * pixels, dim=0)
return lambda x: custom_group_norm(x, 32, mean, var, self.weight, self.bias)
@staticmethod
def from_tile(tile, norm):
"""
create a function from a single tile without summary
"""
var, mean = get_var_mean(tile, 32)
if var.dtype == torch.float16 and var.isinf().any():
fp32_tile = tile.float()
var, mean = get_var_mean(fp32_tile, 32)
# if it is a macbook, we need to convert back to float16
if var.device.type == 'mps':
# clamp to avoid overflow
var = torch.clamp(var, 0, 60000)
var = var.half()
mean = mean.half()
if hasattr(norm, 'weight'):
weight = norm.weight
bias = norm.bias
else:
weight = None
bias = None
def group_norm_func(x, mean=mean, var=var, weight=weight, bias=bias):
return custom_group_norm(x, 32, mean, var, weight, bias, 1e-6)
return group_norm_func
class VAEHook:
def __init__(self, net, tile_size, is_decoder:bool, fast_decoder:bool, fast_encoder:bool, color_fix:bool, to_gpu:bool=False):
self.net = net # encoder | decoder
self.tile_size = tile_size
self.is_decoder = is_decoder
self.fast_mode = (fast_encoder and not is_decoder) or (fast_decoder and is_decoder)
self.color_fix = color_fix and not is_decoder
self.to_gpu = to_gpu
self.pad = 11 if is_decoder else 32 # FIXME: magic number
def __call__(self, x):
# original_device = next(self.net.parameters()).device
try:
# if self.to_gpu:
# self.net = self.net.to(devices.get_optimal_device())
B, C, H, W = x.shape
if False:#max(H, W) <= self.pad * 2 + self.tile_size:
print("[Tiled VAE]: the input size is tiny and unnecessary to tile.", x.shape, self.pad * 2 + self.tile_size)
return self.net.original_forward(x)
else:
return self.vae_tile_forward(x)
finally:
pass
# self.net = self.net.to(original_device)
def get_best_tile_size(self, lowerbound, upperbound):
"""
Get the best tile size for GPU memory
"""
divider = 32
while divider >= 2:
remainer = lowerbound % divider
if remainer == 0:
return lowerbound
candidate = lowerbound - remainer + divider
if candidate <= upperbound:
return candidate
divider //= 2
return lowerbound
def split_tiles(self, h, w):
"""
Tool function to split the image into tiles
@param h: height of the image
@param w: width of the image
@return: tile_input_bboxes, tile_output_bboxes
"""
tile_input_bboxes, tile_output_bboxes = [], []
tile_size = self.tile_size
pad = self.pad
num_height_tiles = math.ceil((h - 2 * pad) / tile_size)
num_width_tiles = math.ceil((w - 2 * pad) / tile_size)
# If any of the numbers are 0, we let it be 1
# This is to deal with long and thin images
num_height_tiles = max(num_height_tiles, 1)
num_width_tiles = max(num_width_tiles, 1)
# Suggestions from https://github.com/Kahsolt: auto shrink the tile size
real_tile_height = math.ceil((h - 2 * pad) / num_height_tiles)
real_tile_width = math.ceil((w - 2 * pad) / num_width_tiles)
real_tile_height = self.get_best_tile_size(real_tile_height, tile_size)
real_tile_width = self.get_best_tile_size(real_tile_width, tile_size)
print(f'[Tiled VAE]: split to {num_height_tiles}x{num_width_tiles} = {num_height_tiles*num_width_tiles} tiles. ' +
f'Optimal tile size {real_tile_width}x{real_tile_height}, original tile size {tile_size}x{tile_size}')
for i in range(num_height_tiles):
for j in range(num_width_tiles):
# bbox: [x1, x2, y1, y2]
# the padding is is unnessary for image borders. So we directly start from (32, 32)
input_bbox = [
pad + j * real_tile_width,
min(pad + (j + 1) * real_tile_width, w),
pad + i * real_tile_height,
min(pad + (i + 1) * real_tile_height, h),
]
# if the output bbox is close to the image boundary, we extend it to the image boundary
output_bbox = [
input_bbox[0] if input_bbox[0] > pad else 0,
input_bbox[1] if input_bbox[1] < w - pad else w,
input_bbox[2] if input_bbox[2] > pad else 0,
input_bbox[3] if input_bbox[3] < h - pad else h,
]
# scale to get the final output bbox
output_bbox = [x * 8 if self.is_decoder else x // 8 for x in output_bbox]
tile_output_bboxes.append(output_bbox)
# indistinguishable expand the input bbox by pad pixels
tile_input_bboxes.append([
max(0, input_bbox[0] - pad),
min(w, input_bbox[1] + pad),
max(0, input_bbox[2] - pad),
min(h, input_bbox[3] + pad),
])
return tile_input_bboxes, tile_output_bboxes
@torch.no_grad()
def estimate_group_norm(self, z, task_queue, color_fix):
device = z.device
tile = z
last_id = len(task_queue) - 1
while last_id >= 0 and task_queue[last_id][0] != 'pre_norm':
last_id -= 1
if last_id <= 0 or task_queue[last_id][0] != 'pre_norm':
raise ValueError('No group norm found in the task queue')
# estimate until the last group norm
for i in range(last_id + 1):
task = task_queue[i]
if task[0] == 'pre_norm':
group_norm_func = GroupNormParam.from_tile(tile, task[1])
task_queue[i] = ('apply_norm', group_norm_func)
if i == last_id:
return True
tile = group_norm_func(tile)
elif task[0] == 'store_res':
task_id = i + 1
while task_id < last_id and task_queue[task_id][0] != 'add_res':
task_id += 1
if task_id >= last_id:
continue
task_queue[task_id][1] = task[1](tile)
elif task[0] == 'add_res':
tile += task[1].to(device)
task[1] = None
elif color_fix and task[0] == 'downsample':
for j in range(i, last_id + 1):
if task_queue[j][0] == 'store_res':
task_queue[j] = ('store_res_cpu', task_queue[j][1])
return True
else:
tile = task[1](tile)
try:
devices.test_for_nans(tile, "vae")
except:
print(f'Nan detected in fast mode estimation. Fast mode disabled.')
return False
raise IndexError('Should not reach here')
@perfcount
@torch.no_grad()
def vae_tile_forward(self, z):
"""
Decode a latent vector z into an image in a tiled manner.
@param z: latent vector
@return: image
"""
device = next(self.net.parameters()).device
net = self.net
tile_size = self.tile_size
is_decoder = self.is_decoder
z = z.detach() # detach the input to avoid backprop
N, height, width = z.shape[0], z.shape[2], z.shape[3]
net.last_z_shape = z.shape
# Split the input into tiles and build a task queue for each tile
print(f'[Tiled VAE]: input_size: {z.shape}, tile_size: {tile_size}, padding: {self.pad}')
in_bboxes, out_bboxes = self.split_tiles(height, width)
# Prepare tiles by split the input latents
tiles = []
for input_bbox in in_bboxes:
tile = z[:, :, input_bbox[2]:input_bbox[3], input_bbox[0]:input_bbox[1]].cpu()
tiles.append(tile)
num_tiles = len(tiles)
num_completed = 0
# Build task queues
single_task_queue = build_task_queue(net, is_decoder)
if self.fast_mode:
# Fast mode: downsample the input image to the tile size,
# then estimate the group norm parameters on the downsampled image
scale_factor = tile_size / max(height, width)
z = z.to(device)
downsampled_z = F.interpolate(z, scale_factor=scale_factor, mode='nearest-exact')
# use nearest-exact to keep statictics as close as possible
print(f'[Tiled VAE]: Fast mode enabled, estimating group norm parameters on {downsampled_z.shape[3]} x {downsampled_z.shape[2]} image')
# ======= Special thanks to @Kahsolt for distribution shift issue ======= #
# The downsampling will heavily distort its mean and std, so we need to recover it.
std_old, mean_old = torch.std_mean(z, dim=[0, 2, 3], keepdim=True)
std_new, mean_new = torch.std_mean(downsampled_z, dim=[0, 2, 3], keepdim=True)
downsampled_z = (downsampled_z - mean_new) / std_new * std_old + mean_old
del std_old, mean_old, std_new, mean_new
# occasionally the std_new is too small or too large, which exceeds the range of float16
# so we need to clamp it to max z's range.
downsampled_z = torch.clamp_(downsampled_z, min=z.min(), max=z.max())
estimate_task_queue = clone_task_queue(single_task_queue)
if self.estimate_group_norm(downsampled_z, estimate_task_queue, color_fix=self.color_fix):
single_task_queue = estimate_task_queue
del downsampled_z
task_queues = [clone_task_queue(single_task_queue) for _ in range(num_tiles)]
# Dummy result
result = None
result_approx = None
try:
with devices.autocast():
result_approx = torch.cat([F.interpolate(cheap_approximation(x).unsqueeze(0), scale_factor=opt_f, mode='nearest-exact') for x in z], dim=0).cpu()
except: pass
# Free memory of input latent tensor
del z
# Task queue execution
pbar = tqdm(total=num_tiles * len(task_queues[0]), desc=f"[Tiled VAE]: Executing {'Decoder' if is_decoder else 'Encoder'} Task Queue: ")
pbar_comfy = comfy.utils.ProgressBar(num_tiles * len(task_queues[0]))
# execute the task back and forth when switch tiles so that we always
# keep one tile on the GPU to reduce unnecessary data transfer
forward = True
interrupted = False
state_interrupted = processing_interrupted()
#state.interrupted = interrupted
while True:
if state_interrupted: interrupted = True ; break
group_norm_param = GroupNormParam()
for i in range(num_tiles) if forward else reversed(range(num_tiles)):
if state_interrupted: interrupted = True ; break
tile = tiles[i].to(device)
input_bbox = in_bboxes[i]
task_queue = task_queues[i]
interrupted = False
while len(task_queue) > 0:
if state_interrupted: interrupted = True ; break
# DEBUG: current task
# print('Running task: ', task_queue[0][0], ' on tile ', i, '/', num_tiles, ' with shape ', tile.shape)
task = task_queue.pop(0)
if task[0] == 'pre_norm':
group_norm_param.add_tile(tile, task[1])
break
elif task[0] == 'store_res' or task[0] == 'store_res_cpu':
task_id = 0
res = task[1](tile)
if not self.fast_mode or task[0] == 'store_res_cpu':
res = res.cpu()
while task_queue[task_id][0] != 'add_res':
task_id += 1
task_queue[task_id][1] = res
elif task[0] == 'add_res':
tile += task[1].to(device)
task[1] = None
else:
tile = task[1](tile)
pbar.update(1)
pbar_comfy.update(1)
if interrupted: break
# check for NaNs in the tile.
# If there are NaNs, we abort the process to save user's time
devices.test_for_nans(tile, "vae")
if len(task_queue) == 0:
tiles[i] = None
num_completed += 1
if result is None: # NOTE: dim C varies from different cases, can only be inited dynamically
result = torch.zeros((N, tile.shape[1], height * 8 if is_decoder else height // 8, width * 8 if is_decoder else width // 8), device=device, requires_grad=False)
result[:, :, out_bboxes[i][2]:out_bboxes[i][3], out_bboxes[i][0]:out_bboxes[i][1]] = crop_valid_region(tile, in_bboxes[i], out_bboxes[i], is_decoder)
del tile
elif i == num_tiles - 1 and forward:
forward = False
tiles[i] = tile
elif i == 0 and not forward:
forward = True
tiles[i] = tile
else:
tiles[i] = tile.cpu()
del tile
if interrupted: break
if num_completed == num_tiles: break
# insert the group norm task to the head of each task queue
group_norm_func = group_norm_param.summary()
if group_norm_func is not None:
for i in range(num_tiles):
task_queue = task_queues[i]
task_queue.insert(0, ('apply_norm', group_norm_func))
# Done!
pbar.close()
if interrupted:
del result, result_approx
comfy.model_management.throw_exception_if_processing_interrupted()
vae_dtype = comfy.model_management.vae_dtype()
return result.to(dtype=vae_dtype, device=device) if result is not None else result_approx.to(device=device, dtype=vae_dtype)
# from .tiled_vae import VAEHook, get_rcmd_enc_tsize, get_rcmd_dec_tsize
from nodes import VAEEncode, VAEDecode
class TiledVAE:
def process(self, *args, **kwargs):
samples = kwargs['samples'] if 'samples' in kwargs else (kwargs['pixels'] if 'pixels' in kwargs else args[0])
_vae = kwargs['vae'] if 'vae' in kwargs else args[1]
tile_size = kwargs['tile_size'] if 'tile_size' in kwargs else args[2]
fast = kwargs['fast'] if 'fast' in kwargs else args[3]
color_fix = kwargs['color_fix'] if 'color_fix' in kwargs else False
is_decoder = self.is_decoder
devices.device = _vae.device
# for shorthand
vae = _vae.first_stage_model
encoder = vae.encoder
decoder = vae.decoder
# # undo hijack if disabled (in cases last time crashed)
# if not enabled:
# if self.hooked:
if isinstance(encoder.forward, VAEHook):
encoder.forward.net = None
encoder.forward = encoder.original_forward
if isinstance(decoder.forward, VAEHook):
decoder.forward.net = None
decoder.forward = decoder.original_forward
# self.hooked = False
# return
# if devices.get_optimal_device_name().startswith('cuda') and vae.device == devices.cpu and not vae_to_gpu:
# print("[Tiled VAE] warn: VAE is not on GPU, check 'Move VAE to GPU' if possible.")
# do hijack
# kwargs = {
# 'fast_decoder': fast_decoder,
# 'fast_encoder': fast_encoder,
# 'color_fix': color_fix,
# 'to_gpu': vae_to_gpu,
# }
# save original forward (only once)
if not hasattr(encoder, 'original_forward'): setattr(encoder, 'original_forward', encoder.forward)
if not hasattr(decoder, 'original_forward'): setattr(decoder, 'original_forward', decoder.forward)
# self.hooked = True
# encoder.forward = VAEHook(encoder, encoder_tile_size, is_decoder=False, **kwargs)
# decoder.forward = VAEHook(decoder, decoder_tile_size, is_decoder=True, **kwargs)
fn = VAEHook(net=decoder if is_decoder else encoder, tile_size=tile_size // 8 if is_decoder else tile_size,
is_decoder=is_decoder, fast_decoder=fast, fast_encoder=fast,
color_fix=color_fix, to_gpu=comfy.model_management.vae_device().type != 'cpu')
if is_decoder:
decoder.forward = fn
else:
encoder.forward = fn
ret = (None,)
try:
with devices.without_autocast():
if not is_decoder:
ret = VAEEncode().encode(_vae, samples)
else:
ret = VAEDecode().decode(_vae, samples) if is_decoder else VAEEncode().encode(_vae, samples)
finally:
if isinstance(encoder.forward, VAEHook):
encoder.forward.net = None
encoder.forward = encoder.original_forward
if isinstance(decoder.forward, VAEHook):
decoder.forward.net = None
decoder.forward = decoder.original_forward
return ret
class VAEEncodeTiled_TiledDiffusion(TiledVAE):
@classmethod
def INPUT_TYPES(s):
fast = True
tile_size = get_rcmd_enc_tsize()
return {"required": {"pixels": ("IMAGE", ),
"vae": ("VAE", ),
"tile_size": ("INT", {"default": tile_size, "min": 256, "max": 4096, "step": 16}),
"fast": ("BOOLEAN", {"default": fast}),
"color_fix": ("BOOLEAN", {"default": fast}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "process"
CATEGORY = "_for_testing"
def __init__(self):
self.is_decoder = False
super().__init__()
class VAEDecodeTiled_TiledDiffusion(TiledVAE):
@classmethod
def INPUT_TYPES(s):
tile_size = get_rcmd_dec_tsize() * opt_f
return {"required": {"samples": ("LATENT", ),
"vae": ("VAE", ),
"tile_size": ("INT", {"default": tile_size, "min": 48*opt_f, "max": 4096, "step": 16}),
"fast": ("BOOLEAN", {"default": True}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "process"
CATEGORY = "_for_testing"
def __init__(self):
self.is_decoder = True
super().__init__()
NODE_CLASS_MAPPINGS = {
"VAEEncodeTiled_TiledDiffusion": VAEEncodeTiled_TiledDiffusion,
"VAEDecodeTiled_TiledDiffusion": VAEDecodeTiled_TiledDiffusion,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"VAEEncodeTiled_TiledDiffusion": "Tiled VAE Encode",
"VAEDecodeTiled_TiledDiffusion": "Tiled VAE Decode",
}