This repository has been archived by the owner on Sep 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 97
/
test_mot17.py
135 lines (110 loc) · 5.08 KB
/
test_mot17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from tracker import SSTTracker, TrackerConfig, Track
# from sst_tracker import TrackSet as SSTTracker
import cv2
from data.mot_data_reader import MOTDataReader
import numpy as np
from config.config import config
from utils.timer import Timer
import argparse
import os
parser = argparse.ArgumentParser(description='Single Shot Tracker Test')
parser.add_argument('--version', default='v1', help='current version')
parser.add_argument('--mot_root', default=config['mot_root'], help='MOT ROOT')
parser.add_argument('--type', default=config['type'], help='train/test')
parser.add_argument('--show_image', default=True, help='show image if true, or hidden')
parser.add_argument('--save_video', default=True, help='save video if true')
parser.add_argument('--log_folder', default=config['log_folder'], help='video saving or result saving folder')
parser.add_argument('--mot_version', default=17, help='mot version')
args = parser.parse_args()
def test(choice=None):
if args.type == 'train':
dataset_index = [2, 4, 5, 9, 10, 11, 13]
dataset_detection_type = {'-DPM', '-FRCNN', '-SDP'}
if args.type == 'test':
dataset_index = [1, 3, 6, 7, 8, 12, 14]
dataset_detection_type = {'-FRCNN', '-SDP', '-DPM'}
dataset_image_folder_format = os.path.join(args.mot_root, args.type+'/MOT'+str(args.mot_version)+'-{:02}{}/img1')
detection_file_name_format=os.path.join(args.mot_root, args.type+'/MOT'+str(args.mot_version)+'-{:02}{}/det/det.txt')
if not os.path.exists(args.log_folder):
os.mkdir(args.log_folder)
save_folder = ''
choice_str = ''
if not choice is None:
choice_str = TrackerConfig.get_configure_str(choice)
save_folder = os.path.join(args.log_folder, choice_str)
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# else:
# return
saved_file_name_format = os.path.join(save_folder, 'MOT'+str(args.mot_version)+'-{:02}{}.txt')
save_video_name_format = os.path.join(save_folder, 'MOT'+str(args.mot_version)+'-{:02}{}.avi')
f = lambda format_str: [format_str.format(index, type) for type in dataset_detection_type for index in dataset_index]
timer = Timer()
for image_folder, detection_file_name, saved_file_name, save_video_name in zip(f(dataset_image_folder_format), f(detection_file_name_format), f(saved_file_name_format), f(save_video_name_format)):
print('start processing '+saved_file_name)
tracker = SSTTracker()
reader = MOTDataReader(image_folder = image_folder,
detection_file_name =detection_file_name,
min_confidence=0.0)
result = list()
result_str = saved_file_name
first_run = True
for i, item in enumerate(reader):
if i > len(reader):
break
if item is None:
continue
img = item[0]
det = item[1]
if img is None or det is None or len(det)==0:
continue
if len(det) > config['max_object']:
det = det[:config['max_object'], :]
h, w, _ = img.shape
if first_run and args.save_video:
vw = cv2.VideoWriter(save_video_name, cv2.VideoWriter_fourcc('M','J','P','G'), 10, (w, h))
first_run = False
det[:, [2,4]] /= float(w)
det[:, [3,5]] /= float(h)
timer.tic()
image_org = tracker.update(img, det[:, 2:6], args.show_image, i)
timer.toc()
print('{}:{}, {}, {}\r'.format(os.path.basename(saved_file_name), i, int(i*100/len(reader)), choice_str))
if args.show_image and not image_org is None:
cv2.imshow('res', image_org)
cv2.waitKey(1)
if args.save_video and not image_org is None:
vw.write(image_org)
# save result
for t in tracker.tracks:
n = t.nodes[-1]
if t.age == 1:
b = n.get_box(tracker.frame_index-1, tracker.recorder)
result.append(
[i] + [t.id] + [b[0]*w, b[1]*h, b[2]*w, b[3]*h] + [-1, -1, -1, -1]
)
# save data
np.savetxt(saved_file_name, np.array(result).astype(int), fmt='%i')
print(result_str)
print(timer.total_time)
print(timer.average_time)
if __name__ == '__main__':
all_choices = TrackerConfig.get_choices_age_node()
iteration = 3
# test()
i = 0
for age in range(1):
for node in range(1):
c = (0, 0, 4, 0, 3, 3)
choice_str = TrackerConfig.get_configure_str(c)
TrackerConfig.set_configure(c)
print('=============================={}.{}=============================='.format(i, choice_str))
test(c)
i += 1
# for i in range(10):
# c = all_choices[-i]
#
# choice_str = TrackerConfig.get_configure_str(c)
# TrackerConfig.set_configure(c)
# print('=============================={}.{}=============================='.format(i, choice_str))
# test(c)