-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsnn_synaptic.py
292 lines (248 loc) · 10.8 KB
/
snn_synaptic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import torch
import numpy as np
import torch.nn as nn
import snntorch as snn
import matplotlib.pyplot as plt
from snntorch import utils, spikegen
from snntorch import spikeplot as splt
from torch.utils.data import DataLoader, TensorDataset
"""
Author: Shilpa Kancharla
Last Modified: December 15, 2021
"""
class SpikingSynapticNeuralNetwork(nn.Module):
"""
Parameters in SpikingSynapticNeuralNetwork class:
1. number_inputs: Number of inputs to the SNN.
2. number_hidden: Number of hidden layers.
3. number_outputs: Number of output classes.
4. beta: Decay rate of membrane potential.
5. alpha: Decay rate of synaptic current.
"""
def __init__(self, number_inputs, number_hidden, number_outputs, beta, alpha):
super().__init__()
self.number_inputs = number_inputs
self.number_hidden = number_hidden
self.number_outputs = number_outputs
self.beta = beta
self.alpha = alpha
# Initialize layers
self.fc1 = nn.Linear(self.number_inputs, self.number_hidden)
self.lif1 = snn.Synaptic(alpha = alpha, beta = beta)
self.fc2 = nn.Linear(self.number_hidden, self.number_outputs)
self.lif2 = snn.Synaptic(alpha = alpha, beta = beta)
"""
Forward propagation of SNN. The code below function will only be called once the input argument x
is explicitly passed into net.
@param x: input passed into the network
@return layer of output after applying final spiking neuron
"""
def forward(self, x):
num_steps = 25
# Periodic spiking input, spk_in = 0.2 V
w = 0.2
spk_period = torch.cat((torch.ones(1) * w, torch.zeros(9)), 0)
spk_in = spk_period.repeat(20)
# Initialize hidden states and output
syn, mem = self.lif1.init_synaptic()
syn2, mem2 = self.lif2.init_synaptic()
spk_out = torch.zeros(1)
syn_rec = []
mem_rec = []
spk_rec = []
# Simulate neurons
for step in range(num_steps):
cur1 = self.fc1(x)
spk_out, syn, mem = self.lif1(cur1, syn, mem)
cur2 = self.fc2(spk_out)
spk_out2, syn2, mem2 = self.lif2(cur2, syn2, mem2)
spk_rec.append(spk_out2)
syn_rec.append(syn2)
mem_rec.append(mem2)
# Convert lists to tensors
spk_rec = torch.stack(spk_rec, dim = 0)
syn_rec = torch.stack(syn_rec, dim = 0)
mem_rec = torch.stack(mem_rec, dim = 0)
return spk_rec, syn_rec, mem_rec
"""
Testing out one iteration of training to ensure network can run.
@param net: spiking neural network object
@param train_loader: DataLoader object with training data
@param test_loader: DataLoader object with test data
@param dtype: data type
@param device: device to load network on
@param optimizer: Adam optimizer
@return loss history of train data
@return loss history of test data
@return accuracy history of train data (dictionary)
@return accuracy history of test data (dictionary)
"""
def training_loop(net, train_loader, test_loader, dtype, device, optimizer):
num_epochs = 1
loss_history = []
test_loss_history = []
acc_history = dict()
test_acc_history = dict()
counter = 0
count_test_loss = 0
# Temporal dynamics
num_steps = 25
# Outer training loop
for epoch in range(num_epochs):
iter_counter = 0
train_batch = iter(train_loader)
# Minibatch training loop
for data, targets in train_batch:
data = data.to(device)
targets = targets.to(device)
# Forward pass
net.train()
try:
spk_rec, syn_rec, mem_rec = net(data.view(batch_size, 11))
except RuntimeError:
print("Hit RuntimeError.")
return loss_history, test_loss_history, acc_history, test_acc_history # Return values to this point
# Initialize the loss and sum over time
loss_val = torch.zeros((1), dtype = dtype, device = device)
for step in range(num_steps):
loss_val += loss_function(mem_rec[step], targets.float().flatten().to(device).unsqueeze(1))
# Gradient calculation and weight update
optimizer.zero_grad()
loss_val.backward()
optimizer.step()
# Store loss history for future plotting
loss_history.append(loss_val.item())
# Test set
with torch.no_grad():
net.eval()
test_data, test_targets = next(iter(test_loader))
test_data = test_data.to(device)
test_targets = test_targets.to(device)
# Test set forward pass
try:
test_spk, test_syn, test_mem = net(test_data.view(batch_size, 11))
except RuntimeError:
print("Hit RuntimeError.")
return loss_history, test_loss_history, acc_history, test_acc_history
# Test set loss
test_loss = torch.zeros((1), dtype = dtype, device = device)
for step in range(num_steps):
test_loss += loss_function(test_mem[step], test_targets.float().flatten().to(device).unsqueeze(1))
test_loss_history.append(test_loss.item())
# Print train/test loss and accuracy
if counter % 50 == 0:
acc_value, test_acc_value = train_printer(epoch, iter_counter, counter, loss_history,
data, targets, test_data, test_targets)
acc_history[iter_counter] = acc_value
test_acc_history[iter_counter] = test_acc_value
counter = counter + 1
iter_counter = iter_counter + 1
# Break loop if any of these loss criteria are met
if torch.allclose(test_loss, torch.tensor([0.0009])):
count_test_loss = count_test_loss + 1
if count_test_loss == 3:
return loss_history, test_loss_history, acc_history, test_acc_history
return loss_history, test_loss_history, acc_history, test_acc_history
"""
Calculate the accuracy after each iteration for the train and test sets.
@param data: feature values
@param targets: target values
@param train: Boolean of if we are in train mode or not
@return accuracy value for the iteration
"""
def print_batch_accuracy(data, targets, train = False):
output, _, _ = net(data.view(batch_size, -1))
_, idx = output.sum(dim = 0).max(1)
acc = np.mean((targets == idx).detach().cpu().numpy())
if train:
print(f"Train set accuracy for a single minibatch: {acc * 100:.2f}%")
else:
print(f"Test set accuracy for a single minibatch: {acc * 100:.2f}%")
return acc * 100
"""
Print the results of training.
@param epoch: which epoch is occuring right now
@param iter_counter: counts number of iterations
@param counter: indexes what content to print in loss history
@param loss_history: array of loss values
@param data: feature values of training set
@param targets: target values of training set
@param test_data: feature values of test set
@param test_targets: target values of test set
"""
def train_printer(epoch, iter_counter, counter, loss_history, data, targets, test_data, test_targets):
print(f"Epoch {epoch}, Iteration {iter_counter}")
print(f"Train Set Loss: {loss_history[counter]:.2f}")
print(f"Test Set Loss: {loss_history[counter]:.2f}")
acc = print_batch_accuracy(data, targets, train = True)
test_acc = print_batch_accuracy(test_data, test_targets, train = False)
print("\n")
return acc, test_acc
"""
Plot the loss and test loss histories.
@param loss_history: loss history of train data
@param test_loss_history: loss history of test data
"""
def plot_loss(loss_history, test_loss_history):
fig = plt.figure(facecolor = 'w', figsize = (20, 10))
plt.plot(loss_history)
plt.plot(test_loss_history)
plt.title("Loss Curves")
plt.legend(["Train Loss", "Test Loss"])
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.savefig('synaptic_loss_histories.png')
"""
Plot the accuracy history.
@param acc: accuracy history of train data (dictionary)
@param test_acc: accuracy history of test data (dictionary)
"""
def plot_accuracy(acc, test_acc):
fig = plt.figure(facecolor = 'w', figsize = (20, 10))
acc_list = acc.items()
acc_list = sorted(acc_list)
x_acc, y_acc = zip(*acc_list)
plt.plot(x_acc, y_acc, label = "Training")
test_acc_list = test_acc.items()
test_acc_list = sorted(test_acc_list)
test_x_acc, test_y_acc = zip(*test_acc_list)
plt.plot(test_x_acc, test_y_acc, label = "Test")
plt.title("Accuracy Curves")
plt.xlabel("Iteration")
plt.ylabel("Accuracy %")
plt.savefig('accuracies.png')
# Driver code
if __name__ == "__main__":
# Load .npy files once you save them
INPUT_TRAIN = 'npy_files\\input_train_fe.npy'
OUTPUT_TRAIN = 'npy_files\\output_train_fe.npy'
INPUT_TEST = 'npy_files\\input_test_fe.npy'
OUTPUT_TEST = 'npy_files\\output_test_fe.npy'
features_train_tensor = np.load(INPUT_TRAIN)
target_train_tensor = np.load(OUTPUT_TRAIN)
features_test_tensor = np.load(INPUT_TEST)
target_test_tensor = np.load(OUTPUT_TEST)
batch_size = 128
# Passing numpy array to to DataLoader
train = TensorDataset(torch.from_numpy(features_train_tensor).float(),
torch.from_numpy(target_train_tensor).float())
test = TensorDataset(torch.from_numpy(features_test_tensor).float(),
torch.from_numpy(target_test_tensor).float())
train_loader = DataLoader(dataset = train,
batch_size = batch_size,
shuffle = True,
drop_last = True)
test_loader = DataLoader(dataset = test,
batch_size = batch_size,
shuffle = True,
drop_last = True)
dtype = torch.float
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
net = SpikingSynapticNeuralNetwork(11, 1000, 1, 0.9, 0.8).to(device) # Load network onto CUDA if available
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(net.parameters(), lr = 5e-4, betas = (0.9, 0.999))
#training_one_iteration(train_loader, dtype, device, optimizer)
loss_history, test_loss_history, acc, test_acc = training_loop(net, train_loader, test_loader, dtype,
device, optimizer)
plot_loss(loss_history, test_loss_history)
plot_accuracy(acc, test_acc)