-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminist_model.py
75 lines (62 loc) · 2.67 KB
/
minist_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import math
class BasickBlock(nn.Module):
def __init__(self, n_in, n_out, stride=1):
super(BasickBlock, self).__init__()
self.connection = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(n_in, n_out, 3, stride, 1, bias=False)),
('norm1', nn.BatchNorm2d(n_out)),
('relu1', nn.ReLU(inplace=True)),
('conv2', nn.Conv2d(n_out, n_out, 3, 1, 1, bias=False)),
('norm2', nn.BatchNorm2d(n_out)),
]))
self.relu = nn.ReLU(inplace=True)
self.downsample = nn.Sequential(
nn.Conv2d(n_in, n_out, 1, stride, bias=False),
nn.BatchNorm2d(n_out),
)
self.stride = stride
def forward(self, x):
mapping = self.connection(x)
if self.stride != 1:
x = self.downsample(x)
return self.relu(mapping + x)
class ResidualBlock(nn.Module):
def __init__(self, n_in, n_out, n_block, stride=1):
super(ResidualBlock, self).__init__()
self.blocks = nn.Sequential()
self.blocks.add_module('block0', BasickBlock(n_in, n_out, stride))
for i in range(n_block - 1):
self.blocks.add_module('block{}'.format(i + 1), BasickBlock(n_out, n_out))
def forward(self, x):
return self.blocks(x)
class ResNetCifar10(nn.Module):
def __init__(self, n_block=3):
super(ResNetCifar10, self).__init__()
ch = [4, 8, 16]#ch = [16, 32, 64]
self.features = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1, ch[0], 3, 1, 1, bias=False)), # 1x28x28->4x28x28
('norm1', nn.BatchNorm2d(ch[0])),
('relu1', nn.ReLU(inplace=True)),
('resb1', ResidualBlock(ch[0], ch[0], n_block)), #4x28x28->4x28x28
('resb2', ResidualBlock(ch[0], ch[1], n_block, 2)), # 4x28x28->8x14x14
('resb3', ResidualBlock(ch[1], ch[2], n_block, 2)), # 8x14x14->16x7x7
('avgpl', nn.AvgPool2d(7)),
]))
self.fc = nn.Linear(ch[2], 10)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return F.log_softmax(x, 0)