-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtokenizer.py
63 lines (53 loc) · 2.07 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import string, re, numpy as np
# tokenizer
def tokenizer(text):
# print("tokenizer", text)
if isinstance(text, bytes):
text = text.decode(encoding="utf-8")
if any(isinstance(text, t) for t in (list, tuple, np.ndarray)):
return [tokenizer(t) for t in text]
# Create a regular expression pattern to match tokens within angle brackets
angle_bracket_pattern = r"<[^>]+>"
# Updated pattern to include new lines and tabs as separate tokens
token_pattern = angle_bracket_pattern + r"|[\w\-']+|[^\w\s]|\n|\t"
# Split by whitespace, punctuation marks, new lines, and tabs while preserving tokens within angle brackets
tokens = re.findall(token_pattern, text, re.UNICODE)
# return [token.upper() if token[0] == "<" else token for token in tokens]
newtokens = []
for token in tokens:
if token.startswith("<SPECIAL:"):
newtokens.append(token.upper())
elif token[0] in string.ascii_uppercase:
newtokens.append("<SPECIAL:CAPITAL>")
newtokens.append(token.lower())
else:
newtokens.append(token.lower())
return newtokens
def detokenizer(tokens):
# if iterable
if any(isinstance(tokens, t) for t in (list, tuple, np.ndarray)) and not isinstance(tokens[0], str):
return [detokenizer(token) for token in tokens]
if isinstance(tokens, str):
raise TypeError("detokenizer: tokens must be a list of strings")
text = " "
capitalize_next = True
no_space_before = True
for token in tokens:
if token in ".,!?;]):'\"\n":
no_space_before = True
if token == "<SPECIAL:CAPITAL>":
capitalize_next = True
continue
if capitalize_next:
token = token.capitalize()
capitalize_next = False
if no_space_before:
text += token
no_space_before = False
else:
text += " " + token
if token in "([<\n":
no_space_before = True
# return text.strip()
# only strip spaces, not newlines
return text.strip(" ")