-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
132 lines (110 loc) · 5.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import argparse
import logging
import sentencepiece as spm
from tqdm import tqdm
from statistics import mean
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from criterion import LmCrossEntropyLoss, LabelSmoothedLmCrossEntropyLoss
from dataset import ParaphraseDataset, PAD_INDEX, UNK_INDEX, BOS_INDEX, EOS_INDEX
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser()
# Data
parser.add_argument("--train_source_file", type=str, required=True)
parser.add_argument("--train_target_file", type=str, required=True)
parser.add_argument("--valid_source_file", type=str, required=True)
parser.add_argument("--valid_target_file", type=str, required=True)
parser.add_argument("--spm_file", type=str, required=True)
# Model
parser.add_argument("--d_model", type=int, default=256)
parser.add_argument("--nhead", type=int, default=8)
parser.add_argument("--num_encoder_layers", type=int, default=6)
parser.add_argument("--num_decoder_layers", type=int, default=6)
parser.add_argument("--dim_feedforward", type=int, default=512)
parser.add_argument("--dropout", type=float, default=.1)
parser.add_argument("--label_smoothing", type=float, default=.1)
parser.add_argument("--warmup_step", type=int, default=4000)
# Optim
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--num_epochs", type=int, default=50)
parser.add_argument("--print_every", type=int, default=100)
parser.add_argument("--checkpoint_file", type=str, default="model.pth")
parser.add_argument("--log_file", type=str, default="train.log")
args = parser.parse_args()
def main() -> None:
logger = logging.getLogger(__name__)
handler1 = logging.StreamHandler()
handler1.setLevel(logging.INFO)
handler2 = logging.FileHandler(filename=args.log_file, mode='w')
handler2.setFormatter(logging.Formatter("%(asctime)s %(levelname)8s %(message)s"))
handler2.setLevel(logging.INFO)
logger.setLevel(logging.INFO)
logger.addHandler(handler1)
logger.addHandler(handler2)
vocabulary_size = len(spm.SentencePieceProcessor(model_file=args.spm_file))
train_dataset = ParaphraseDataset(args.train_source_file, args.train_target_file, tokenizer=spm.SentencePieceProcessor(model_file=args.spm_file).encode)
valid_dataset = ParaphraseDataset(args.valid_source_file, args.valid_target_file, tokenizer=spm.SentencePieceProcessor(model_file=args.spm_file).encode)
train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True, collate_fn=train_dataset.collate_fn, drop_last=True)
valid_loader = DataLoader(valid_dataset, args.batch_size, shuffle=False, collate_fn=valid_dataset.collate_fn, drop_last=True)
########## Transformer Encoder Decoder ##########
from models.transformer import Transformer
model = Transformer(
num_embeddings=vocabulary_size,
d_model=args.d_model,
nhead=args.nhead,
num_encoder_layers=args.num_encoder_layers,
num_decoder_layers=args.num_decoder_layers,
dim_feedforward=args.dim_feedforward,
dropout=args.dropout).to(device)
criterion = LabelSmoothedLmCrossEntropyLoss(PAD_INDEX, label_smoothing=args.label_smoothing, reduction='batchmean')
lr_lambda = lambda step: model.d_model**(-0.5) * min((step+1)**(-0.5), (step+1) * args.warmup_step**(-1.5))
optimizer = torch.optim.Adam(model.parameters(), lr=1., betas=(0.9, 0.98), eps=1e-09)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
logger.info('Start training')
for epoch in range(args.num_epochs):
train_loss, valid_loss = 0., 0.
pbar = tqdm(train_loader)
pbar.set_description("[Epoch %d/%d]" % (epoch, args.num_epochs))
# Train
model.train()
for itr, (srcs, tgts) in enumerate(pbar):
srcs, tgts = srcs.to(device), tgts.to(device)
src_key_padding_mask = (srcs == PAD_INDEX)
tgt_key_padding_mask = (tgts == PAD_INDEX)
memory_key_padding_mask = src_key_padding_mask
tgt_mask = model.generate_square_subsequent_mask(tgts.size(1)).to(device)
output = model(srcs, tgts, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask,
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask)
loss = criterion(output[:, :-1, :], tgts[:, 1:])
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
train_loss += loss.item()
if itr % args.print_every == 0:
pbar.set_postfix(loss=train_loss / (itr + 1), lr=scheduler.get_last_lr()[0])
train_loss /= len(train_loader)
# Valid
model.eval()
with torch.no_grad():
for (srcs, tgts) in valid_loader:
srcs, tgts = srcs.to(device), tgts.to(device)
src_key_padding_mask = (srcs == PAD_INDEX)
tgt_key_padding_mask = (tgts == PAD_INDEX)
memory_key_padding_mask = src_key_padding_mask
tgt_mask = model.generate_square_subsequent_mask(tgts.size(1)).to(device)
output = model(srcs, tgts, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask,
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask)
loss = criterion(output[:, :-1, :], tgts[:, 1:])
valid_loss += loss.item()
valid_loss /= len(valid_loader)
logger.info('[Epoch %d/%d] Training loss: %.2f, Validation loss: %.2f' % (
epoch, args.num_epochs, train_loss, valid_loss
))
torch.save(model.state_dict(), args.checkpoint_file)
if __name__ == "__main__":
main()