-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathconvert.py
47 lines (39 loc) · 1.62 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import argparse
import os
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from repvgg import get_RepVGG_func_by_name, repvgg_model_convert
parser = argparse.ArgumentParser(description='RepVGG Conversion')
parser.add_argument('load', metavar='LOAD', help='path to the weights file')
parser.add_argument('save', metavar='SAVE', help='path to the weights file')
parser.add_argument('-a', '--arch', metavar='ARCH', default='RepVGG-A0')
def convert():
args = parser.parse_args()
if 'plus' in args.arch:
from repvggplus import get_RepVGGplus_func_by_name
train_model = get_RepVGGplus_func_by_name(args.arch)(deploy=False, use_checkpoint=False)
else:
repvgg_build_func = get_RepVGG_func_by_name(args.arch)
train_model = repvgg_build_func(deploy=False)
if os.path.isfile(args.load):
print("=> loading checkpoint '{}'".format(args.load))
checkpoint = torch.load(args.load)
if 'state_dict' in checkpoint:
checkpoint = checkpoint['state_dict']
elif 'model' in checkpoint:
checkpoint = checkpoint['model']
ckpt = {k.replace('module.', ''): v for k, v in checkpoint.items()} # strip the names
print(ckpt.keys())
train_model.load_state_dict(ckpt)
else:
print("=> no checkpoint found at '{}'".format(args.load))
if 'plus' in args.arch:
train_model.switch_repvggplus_to_deploy()
torch.save(train_model.state_dict(), args.save)
else:
repvgg_model_convert(train_model, save_path=args.save)
if __name__ == '__main__':
convert()