-
Notifications
You must be signed in to change notification settings - Fork 2
/
dump.py
54 lines (42 loc) · 1.54 KB
/
dump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import fasttext
import numpy as np
import joblib
def dump_split(sents_f, embed_model_f, model_f, prefix):
model = joblib.load(model_f)
embed_model = fasttext.load_model(embed_model_f)
sentences = []
embeddings = []
with open(sents_f) as handle:
for new_line in handle:
if len(new_line.split()) < 5:
continue
sentences.append(new_line.strip())
embeddings.append(embed_model.get_sentence_vector(new_line.strip()))
preds = model.predict(embeddings)
results = zip(preds, sentences)
filenames = [prefix + str(i) + '.txt' for i in range(len(model.cluster_centers_))]
handles = [open(f, 'w') for f in filenames]
for pred, sent in results:
handle = handles[pred]
handle.write(sent)
handle.write('\n')
[h.close() for h in handles]
def dump_pred(sents_f, embed_model_f, model_f, dest):
model = joblib.load(model_f)
embed_model = fasttext.load_model(embed_model_f)
sentences = []
embeddings = []
with open(sents_f) as handle:
for new_line in handle:
if len(new_line.split()) < 5:
continue
sentences.append(new_line.strip())
embeddings.append(embed_model.get_sentence_vector(new_line.strip()))
preds = model.predict(embeddings)
results = zip(preds, sentences)
with open(dest, 'w') as handle:
for pred, sent in results:
handle.write(str(pred))
handle.write(' ')
handle.write(sent)
handle.write('\n')