forked from yeyupiaoling/Whisper-Finetune
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathfinetune.py
160 lines (145 loc) · 9.11 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import functools
import os
import platform
import torch
from peft import LoraConfig, get_peft_model, AdaLoraConfig, PeftModel, prepare_model_for_kbit_training
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, WhisperForConditionalGeneration, WhisperProcessor
from utils.callback import SavePeftModelCallback
from utils.data_utils import DataCollatorSpeechSeq2SeqWithPadding
from utils.model_utils import load_from_checkpoint
from utils.reader import CustomDataset
from utils.utils import print_arguments, make_inputs_require_grad, add_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("train_data", type=str, default="dataset/train.json", help="训练数据集的路径")
add_arg("test_data", type=str, default="dataset/test.json", help="测试数据集的路径")
add_arg("base_model", type=str, default="openai/whisper-tiny", help="Whisper的基础模型")
add_arg("output_dir", type=str, default="output/", help="训练保存模型的路径")
add_arg("warmup_steps", type=int, default=50, help="训练预热步数")
add_arg("logging_steps", type=int, default=100, help="打印日志步数")
add_arg("eval_steps", type=int, default=1000, help="多少步数评估一次")
add_arg("save_steps", type=int, default=1000, help="多少步数保存模型一次")
add_arg("num_workers", type=int, default=8, help="读取数据的线程数量")
add_arg("learning_rate", type=float, default=1e-3, help="学习率大小")
add_arg("min_audio_len", type=float, default=0.5, help="最小的音频长度,单位秒")
add_arg("max_audio_len", type=float, default=30, help="最大的音频长度,单位秒")
add_arg("use_adalora", type=bool, default=True, help="是否使用AdaLora而不是Lora")
add_arg("fp16", type=bool, default=True, help="是否使用fp16训练模型")
add_arg("use_8bit", type=bool, default=False, help="是否将模型量化为8位")
add_arg("timestamps", type=bool, default=False, help="训练时是否使用时间戳数据")
add_arg("local_files_only", type=bool, default=False, help="是否只在本地加载模型,不尝试下载")
add_arg("num_train_epochs", type=int, default=3, help="训练的轮数")
add_arg("language", type=str, default="Chinese", help="设置语言,可全称也可简写,如果为None则训练的是多语言")
add_arg("task", type=str, default="transcribe", choices=['transcribe', 'translate'], help="模型的任务")
add_arg("augment_config_path", type=str, default=None, help="数据增强配置文件路径")
add_arg("resume_from_checkpoint", type=str, default=None, help="恢复训练的检查点路径")
add_arg("per_device_train_batch_size", type=int, default=8, help="训练的batch size")
add_arg("per_device_eval_batch_size", type=int, default=8, help="评估的batch size")
add_arg("gradient_accumulation_steps", type=int, default=1, help="梯度累积步数")
args = parser.parse_args()
print_arguments(args)
# 获取Whisper的数据处理器,这个包含了特征提取器、tokenizer
processor = WhisperProcessor.from_pretrained(args.base_model,
language=args.language,
task=args.task,
no_timestamps=not args.timestamps,
local_files_only=args.local_files_only)
# 读取数据
train_dataset = CustomDataset(data_list_path=args.train_data,
processor=processor,
language=args.language,
timestamps=args.timestamps,
min_duration=args.min_audio_len,
max_duration=args.max_audio_len,
augment_config_path=args.augment_config_path)
test_dataset = CustomDataset(data_list_path=args.test_data,
processor=processor,
language=args.language,
timestamps=args.timestamps,
min_duration=args.min_audio_len,
max_duration=args.max_audio_len)
print(f"训练数据:{len(train_dataset)},测试数据:{len(test_dataset)}")
# 数据padding器
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)
# 获取Whisper模型
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
# 获取模型
model = WhisperForConditionalGeneration.from_pretrained(args.base_model,
load_in_8bit=args.use_8bit,
device_map=device_map,
local_files_only=args.local_files_only)
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
# 量化模型
model = prepare_model_for_kbit_training(model)
# 注册forward,否则多卡训练会失败
model.model.encoder.conv1.register_forward_hook(make_inputs_require_grad)
print('加载LoRA模块...')
if args.resume_from_checkpoint:
# 恢复训练时加载Lora参数
print("Loading adapters from checkpoint.")
model = PeftModel.from_pretrained(model, args.resume_from_checkpoint, is_trainable=True)
else:
print(f'adding LoRA modules...')
target_modules = ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"]
print(target_modules)
if args.use_adalora:
config = AdaLoraConfig(init_r=12, target_r=4, beta1=0.85, beta2=0.85, tinit=200, tfinal=1000, deltaT=10,
lora_alpha=32, lora_dropout=0.1, orth_reg_weight=0.5, target_modules=target_modules)
else:
config = LoraConfig(r=32, lora_alpha=64, target_modules=target_modules, lora_dropout=0.05, bias="none")
model = get_peft_model(model, config)
if args.base_model.endswith("/"):
args.base_model = args.base_model[:-1]
output_dir = os.path.join(args.output_dir, os.path.basename(args.base_model))
# 定义训练参数
training_args = \
Seq2SeqTrainingArguments(output_dir=output_dir, # 保存检查点和意志的目录
per_device_train_batch_size=args.per_device_train_batch_size, # 训练batch_size大小
per_device_eval_batch_size=args.per_device_eval_batch_size, # 评估batch_size大小
gradient_accumulation_steps=args.gradient_accumulation_steps, # 训练梯度累计步数
learning_rate=args.learning_rate, # 学习率大小
warmup_steps=args.warmup_steps, # 预热步数
num_train_epochs=args.num_train_epochs, # 微调训练轮数
save_strategy="steps", # 指定按照步数保存检查点
evaluation_strategy="steps", # 指定按照步数评估模型
load_best_model_at_end=True, # 指定是否在结束时加载最优模型
fp16=args.fp16, # 是否使用半精度训练
report_to=["tensorboard"], # 指定使用tensorboard保存log
save_steps=args.save_steps, # 指定保存检查点的步数
eval_steps=args.eval_steps, # 指定评估模型的步数
save_total_limit=5, # 只保存最新检查点的数量
optim='adamw_torch', # 指定优化方法
ddp_find_unused_parameters=False if ddp else None, # 分布式训练设置
dataloader_num_workers=args.num_workers, # 设置读取数据的线程数量
logging_steps=args.logging_steps, # 指定打印log的步数
remove_unused_columns=False, # 删除模型不需要的数据列
label_names=["labels"]) # 与标签对应的输入字典中的键列表
if training_args.local_rank == 0 or training_args.local_rank == -1:
print('=' * 90)
model.print_trainable_parameters()
print('=' * 90)
# 使用Pytorch2.0的编译器
if torch.__version__ >= "2" and platform.system().lower() != 'windows':
model = torch.compile(model)
# 定义训练器
trainer = Seq2SeqTrainer(args=training_args,
model=model,
train_dataset=train_dataset,
eval_dataset=test_dataset,
data_collator=data_collator,
tokenizer=processor.feature_extractor,
callbacks=[SavePeftModelCallback])
model.config.use_cache = False
trainer._load_from_checkpoint = load_from_checkpoint
# 开始训练
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
# 保存最后的模型
trainer.save_state()
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.save_pretrained(os.path.join(output_dir, "checkpoint-final"))