-
Notifications
You must be signed in to change notification settings - Fork 4
/
GA16Generations.py
116 lines (98 loc) · 3.55 KB
/
GA16Generations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import csv
from random import shuffle
from pyevolve import G1DList, GSimpleGA, Consts, Initializators, Selectors, Mutators, Crossovers
import matplotlib.pyplot as plt
import numpy
#Number of Parts
NUM_PARTS = 16
#Precedence Matrix
with open('precedence_matrix_16.csv', 'rb') as csvfile:
precedence_list = []
for line in csvfile.readlines():
array = line.strip().encode('utf-8').split(',')
precedence_list.append(array)
#Directions / Orientations
orientations = ['-z','+x','-z','-z','-z','-z','-z','-z','-z','-z','+y','+y','-y','-y','+x','+x']
#Tool Grippers
tools_grippers = ['A','B','C','C','D','D','D','D','E','E','E','E','E','E','F','F']
def check_precedence_criteria(sequence):
for i,part in enumerate(sequence):
to_search = precedence_list[part]
done_sequence = sequence[0:i]
to_search_final = [x for j, x in enumerate(to_search) if j not in done_sequence]
for a in to_search_final:
if a == '1':
return False
return True
def check_precedence_swaps(sequence):
score = 0
for i,part in enumerate(sequence):
to_search = precedence_list[part]
done_sequence = sequence[0:i]
to_search_final = [x for j, x in enumerate(to_search) if j not in done_sequence]
for a in to_search_final:
if a == '1':
score += 1
return score
def fitness_func(chromosome):
chromosome = list(chromosome)
if check_precedence_criteria(chromosome):
return 0.0005*(calc_tool_changes(chromosome) + calc_orientation_changes(chromosome))
else:
return check_precedence_swaps(chromosome)*0.01
def calc_orientation_changes(sequence):
orien_changes = 0
current_orientation = orientations[sequence[0]]
for part in sequence[1:]:
if orientations[part] != current_orientation:
orien_changes += 1
current_orientation = orientations[part]
return orien_changes
def calc_tool_changes(sequence):
tool_changes = 0
current_tool = tools_grippers[sequence[0]]
for part in sequence[1:]:
if tools_grippers[part] != current_tool:
tool_changes += 1
current_tool = tools_grippers[part]
return tool_changes
def init_pop(genome, **args):
genome.genomeList = range(0, NUM_PARTS)
shuffle(genome.genomeList)
genome = G1DList.G1DList(NUM_PARTS)
genome.setParams(rangemin=0, rangemax=NUM_PARTS-1)
genome.initializator.set(init_pop)
# Set mutator function
genome.mutator.set(Mutators.G1DListMutatorSwap)
# Set Crossover function
genome.crossover.set(Crossovers.G1DListCrossoverCutCrossfill)
genome.evaluator.set(fitness_func)
crossover_rate = []
fitness_value = []
best_value = [1,1]
for x in numpy.arange(150,500,10):
ga = GSimpleGA.GSimpleGA(genome)
# ga.setPopulationSize(20)
ga.setPopulationSize(50)
ga.selector.set(Selectors.GTournamentSelector)
ga.setMutationRate(0.02)
ga.setCrossoverRate(0.9)
# Set type of objective/ fitness function: Convergence
ga.setMinimax(Consts.minimaxType["minimize"])
ga.setGenerations(x)
ga.evolve()
best = ga.bestIndividual()
# print best.score
if check_precedence_criteria(list(best)) == True:
print "X: ", x, best.fitness
if best.fitness < best_value[1]:
best_value = [x,best.fitness]
crossover_rate.append(x)
fitness_value.append(best.fitness)
print "Best Fitness: ", best_value
plt.plot(crossover_rate, fitness_value)
plt.xlabel('Number of generations')
plt.ylabel('Fitness Value')
plt.title('Generations v/s Fitness value')
plt.grid(True)
plt.show()