-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_myLM_sub_back.py
34 lines (26 loc) · 1.09 KB
/
train_myLM_sub_back.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from flair.data import Dictionary
from flair.models import LanguageModel
from flair.trainers.language_model_trainer import LanguageModelTrainer, TextCorpus
import torch.nn as nn
import torch
# are you training a forward or backward LM?
is_forward_lm = False
# load the default character dictionary
dictionary: Dictionary = Dictionary.load('chars')
# get your corpus, process forward and at the character level
corpus = TextCorpus('./resources/tasks/wmt11_sub',
dictionary,
is_forward_lm,
character_level=True,
subword=True)
# instantiate your language model, set hidden size and number of layers
language_model = LanguageModel(dictionary,
is_forward_lm,
hidden_size=2048,
nlayers=1)
# train your language model
trainer = LanguageModelTrainer(language_model, corpus)
trainer.train('resources/taggers/language_model_sub_back',
sequence_length=250,
mini_batch_size=100,
max_epochs=100000)