|
| 1 | +model = dict( |
| 2 | + type='Recognizer3D', |
| 3 | + backbone=dict( |
| 4 | + type='ResNet3dSlowOnly', |
| 5 | + depth=101, |
| 6 | + pretrained=None, |
| 7 | + lateral=False, |
| 8 | + conv1_kernel=(1, 7, 7), |
| 9 | + conv1_stride_t=1, |
| 10 | + pool1_stride_t=1, |
| 11 | + inflate=(0, 0, 1, 1), |
| 12 | + norm_eval=False), |
| 13 | + cls_head=dict( |
| 14 | + type='I3DHead', |
| 15 | + in_channels=2048, |
| 16 | + num_classes=400, |
| 17 | + spatial_type='avg', |
| 18 | + dropout_ratio=0.5)) |
| 19 | +train_cfg = None |
| 20 | +test_cfg = dict(average_clips=None) |
| 21 | +dataset_type = 'RawframeDataset' |
| 22 | +data_root = 'data/kinetics400/rawframes_train' |
| 23 | +data_root_val = 'data/kinetics400/rawframes_val' |
| 24 | +ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt' |
| 25 | +ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt' |
| 26 | +ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt' |
| 27 | +img_norm_cfg = dict( |
| 28 | + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) |
| 29 | +train_pipeline = [ |
| 30 | + dict(type='SampleFrames', clip_len=8, frame_interval=8, num_clips=1), |
| 31 | + dict(type='RawFrameDecode'), |
| 32 | + dict(type='Resize', scale=(-1, 256)), |
| 33 | + dict(type='RandomResizedCrop'), |
| 34 | + dict(type='Resize', scale=(224, 224), keep_ratio=False), |
| 35 | + dict(type='Flip', flip_ratio=0.5), |
| 36 | + dict(type='Normalize', **img_norm_cfg), |
| 37 | + dict(type='FormatShape', input_format='NCTHW'), |
| 38 | + dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), |
| 39 | + dict(type='ToTensor', keys=['imgs', 'label']) |
| 40 | +] |
| 41 | +val_pipeline = [ |
| 42 | + dict( |
| 43 | + type='SampleFrames', |
| 44 | + clip_len=8, |
| 45 | + frame_interval=8, |
| 46 | + num_clips=1, |
| 47 | + test_mode=True), |
| 48 | + dict(type='RawFrameDecode'), |
| 49 | + dict(type='Resize', scale=(-1, 256)), |
| 50 | + dict(type='CenterCrop', crop_size=224), |
| 51 | + dict(type='Flip', flip_ratio=0), |
| 52 | + dict(type='Normalize', **img_norm_cfg), |
| 53 | + dict(type='FormatShape', input_format='NCTHW'), |
| 54 | + dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), |
| 55 | + dict(type='ToTensor', keys=['imgs']) |
| 56 | +] |
| 57 | +test_pipeline = [ |
| 58 | + dict( |
| 59 | + type='SampleFrames', |
| 60 | + clip_len=8, |
| 61 | + frame_interval=8, |
| 62 | + num_clips=10, |
| 63 | + test_mode=True), |
| 64 | + dict(type='RawFrameDecode'), |
| 65 | + dict(type='Resize', scale=(-1, 256)), |
| 66 | + dict(type='ThreeCrop', crop_size=256), |
| 67 | + dict(type='Flip', flip_ratio=0), |
| 68 | + dict(type='Normalize', **img_norm_cfg), |
| 69 | + dict(type='FormatShape', input_format='NCTHW'), |
| 70 | + dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), |
| 71 | + dict(type='ToTensor', keys=['imgs']) |
| 72 | +] |
| 73 | +data = dict( |
| 74 | + videos_per_gpu=8, |
| 75 | + workers_per_gpu=4, |
| 76 | + train=dict( |
| 77 | + type=dataset_type, |
| 78 | + ann_file=ann_file_train, |
| 79 | + data_prefix=data_root, |
| 80 | + pipeline=train_pipeline), |
| 81 | + val=dict( |
| 82 | + type=dataset_type, |
| 83 | + ann_file=ann_file_val, |
| 84 | + data_prefix=data_root_val, |
| 85 | + pipeline=val_pipeline), |
| 86 | + test=dict( |
| 87 | + type=dataset_type, |
| 88 | + ann_file=ann_file_test, |
| 89 | + data_prefix=data_root_val, |
| 90 | + pipeline=test_pipeline)) |
| 91 | +# optimizer |
| 92 | +optimizer = dict( |
| 93 | + type='SGD', lr=0.1, momentum=0.9, |
| 94 | + weight_decay=0.0001) # this lr is used for 8 gpus |
| 95 | +optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2)) |
| 96 | +# learning policy |
| 97 | +lr_config = dict( |
| 98 | + policy='CosineAnnealing', |
| 99 | + min_lr=0, |
| 100 | + warmup='linear', |
| 101 | + warmup_ratio=0.1, |
| 102 | + warmup_by_epoch=True, |
| 103 | + warmup_iters=34) |
| 104 | +total_epochs = 196 |
| 105 | +checkpoint_config = dict(interval=4) |
| 106 | +workflow = [('train', 1)] |
| 107 | +evaluation = dict( |
| 108 | + interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5)) |
| 109 | +log_config = dict( |
| 110 | + interval=20, hooks=[ |
| 111 | + dict(type='TextLoggerHook'), |
| 112 | + ]) |
| 113 | +dist_params = dict(backend='nccl') |
| 114 | +log_level = 'INFO' |
| 115 | +work_dir = './work_dirs/slowonly_r101_8x8x1_196e_kinetics400_rgb' |
| 116 | +load_from = None |
| 117 | +resume_from = None |
| 118 | +find_unused_parameters = False |
0 commit comments