-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathswitch_resample.c
614 lines (497 loc) · 15.6 KB
/
switch_resample.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/*
* FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
* Copyright (C) 2005-2014, Anthony Minessale II <anthm@freeswitch.org>
*
* Version: MPL 1.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
*
* The Initial Developer of the Original Code is
* Anthony Minessale II <anthm@freeswitch.org>
* Portions created by the Initial Developer are Copyright (C)
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Anthony Minessale II <anthm@freeswitch.org>
*
*
* switch_resample.c -- Resampler
*
*/
#include <switch.h>
#include <switch_resample.h>
#ifndef WIN32
#include <switch_private.h>
#endif
#include <speex/speex_resampler.h>
#define NORMFACT (float)0x8000
#define MAXSAMPLE (float)0x7FFF
#define MAXSAMPLEC (char)0x7F
#define QUALITY 0
#ifndef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
#ifndef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#endif
#define resample_buffer(a, b, c) a > b ? ((a / 1000) / 2) * c : ((b / 1000) / 2) * c
SWITCH_DECLARE(switch_status_t) switch_resample_perform_create(switch_audio_resampler_t **new_resampler,
uint32_t from_rate, uint32_t to_rate,
uint32_t to_size,
int quality, uint32_t channels, const char *file, const char *func, int line)
{
int err = 0;
switch_audio_resampler_t *resampler;
double lto_rate, lfrom_rate;
switch_zmalloc(resampler, sizeof(*resampler));
if (!channels) channels = 1;
resampler->resampler = speex_resampler_init(channels, from_rate, to_rate, quality, &err);
if (!resampler->resampler) {
free(resampler);
return SWITCH_STATUS_GENERR;
}
*new_resampler = resampler;
lto_rate = (double) resampler->to_rate;
lfrom_rate = (double) resampler->from_rate;
resampler->from_rate = from_rate;
resampler->to_rate = to_rate;
resampler->factor = (lto_rate / lfrom_rate);
resampler->rfactor = (lfrom_rate / lto_rate);
resampler->channels = channels;
//resampler->to_size = resample_buffer(to_rate, from_rate, (uint32_t) to_size);
resampler->to_size = switch_resample_calc_buffer_size(resampler->to_rate, resampler->from_rate, to_size) / 2;
resampler->to = malloc(resampler->to_size * sizeof(int16_t) * resampler->channels);
switch_assert(resampler->to);
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(uint32_t) switch_resample_process(switch_audio_resampler_t *resampler, int16_t *src, uint32_t srclen)
{
int to_size = switch_resample_calc_buffer_size(resampler->to_rate, resampler->from_rate, srclen) / 2;
if (to_size > resampler->to_size) {
resampler->to_size = to_size;
resampler->to = realloc(resampler->to, resampler->to_size * sizeof(int16_t) * resampler->channels);
switch_assert(resampler->to);
}
resampler->to_len = resampler->to_size;
speex_resampler_process_interleaved_int(resampler->resampler, src, &srclen, resampler->to, &resampler->to_len);
return resampler->to_len;
}
SWITCH_DECLARE(void) switch_resample_destroy(switch_audio_resampler_t **resampler)
{
if (resampler && *resampler) {
if ((*resampler)->resampler) {
speex_resampler_destroy((*resampler)->resampler);
}
free((*resampler)->to);
free(*resampler);
*resampler = NULL;
}
}
SWITCH_DECLARE(switch_size_t) switch_float_to_short(float *f, short *s, switch_size_t len)
{
switch_size_t i;
float ft;
for (i = 0; i < len; i++) {
ft = f[i] * NORMFACT;
if (ft >= 0) {
s[i] = (short) (ft + 0.5);
} else {
s[i] = (short) (ft - 0.5);
}
if ((float) s[i] > MAXSAMPLE)
s[i] = (short) MAXSAMPLE / 2;
if (s[i] < (short) -MAXSAMPLE)
s[i] = (short) -MAXSAMPLE / 2;
}
return len;
}
SWITCH_DECLARE(int) switch_char_to_float(char *c, float *f, int len)
{
int i;
if (len % 2) {
return (-1);
}
for (i = 1; i < len; i += 2) {
f[(int) (i / 2)] = (float) (((c[i]) * 0x100) + c[i - 1]);
f[(int) (i / 2)] /= NORMFACT;
if (f[(int) (i / 2)] > MAXSAMPLE)
f[(int) (i / 2)] = MAXSAMPLE;
if (f[(int) (i / 2)] < -MAXSAMPLE)
f[(int) (i / 2)] = -MAXSAMPLE;
}
return len / 2;
}
SWITCH_DECLARE(int) switch_float_to_char(float *f, char *c, int len)
{
int i;
float ft;
long l;
for (i = 0; i < len; i++) {
ft = f[i] * NORMFACT;
if (ft >= 0) {
l = (long) (ft + 0.5);
} else {
l = (long) (ft - 0.5);
}
c[i * 2] = (unsigned char) ((l) & 0xff);
c[i * 2 + 1] = (unsigned char) (((l) >> 8) & 0xff);
}
return len * 2;
}
SWITCH_DECLARE(int) switch_short_to_float(short *s, float *f, int len)
{
int i;
for (i = 0; i < len; i++) {
f[i] = (float) (s[i]) / NORMFACT;
/* f[i] = (float) s[i]; */
}
return len;
}
SWITCH_DECLARE(void) switch_swap_linear(int16_t *buf, int len)
{
int i;
for (i = 0; i < len; i++) {
buf[i] = ((buf[i] >> 8) & 0x00ff) | ((buf[i] << 8) & 0xff00);
}
}
SWITCH_DECLARE(void) switch_generate_sln_silence(int16_t *data, uint32_t samples, uint32_t channels, uint32_t divisor)
{
int16_t s;
uint32_t x, i, j;
int sum_rnd = 0;
int16_t rnd2 = (int16_t) switch_micro_time_now() + (int16_t) (intptr_t) data;
if (channels == 0) channels = 1;
assert(divisor);
if (divisor == (uint32_t)-1) {
memset(data, 0, samples * 2);
return;
}
for (i = 0; i < samples; i++, sum_rnd = 0) {
for (x = 0; x < 6; x++) {
rnd2 = rnd2 * 31821U + 13849U;
sum_rnd += rnd2;
}
s = (int16_t) ((int16_t) sum_rnd / (int) divisor);
for (j = 0; j < channels; j++) {
*data = s;
data++;
}
}
}
SWITCH_DECLARE(uint32_t) switch_merge_sln(int16_t *data, uint32_t samples, int16_t *other_data, uint32_t other_samples, int channels)
{
int i;
int32_t x, z;
if (channels == 0) channels = 1;
if (samples > other_samples) {
x = other_samples;
} else {
x = samples;
}
for (i = 0; i < x * channels; i++) {
z = data[i] + other_data[i];
switch_normalize_to_16bit(z);
data[i] = (int16_t) z;
}
return x;
}
SWITCH_DECLARE(uint32_t) switch_unmerge_sln(int16_t *data, uint32_t samples, int16_t *other_data, uint32_t other_samples, int channels)
{
int i;
int32_t x;
if (channels == 0) channels = 1;
if (samples > other_samples) {
x = other_samples;
} else {
x = samples;
}
for (i = 0; i < x * channels; i++) {
data[i] -= other_data[i];
}
return x;
}
SWITCH_DECLARE(void) switch_mux_channels(int16_t *data, switch_size_t samples, uint32_t orig_channels, uint32_t channels)
{
switch_size_t i = 0;
uint32_t j = 0;
switch_assert(channels < 11);
if (orig_channels > channels) {
if (channels == 1) {
for (i = 0; i < samples; i++) {
int32_t z = 0;
for (j = 0; j < orig_channels; j++) {
z += (int16_t) data[i * orig_channels + j];
}
switch_normalize_to_16bit(z);
data[i] = (int16_t) z;
}
} else if (channels == 2) {
int mark_buf = 0;
for (i = 0; i < samples; i++) {
int32_t z_left = 0, z_right = 0;
for (j = 0; j < orig_channels; j++) {
if (j % 2) {
z_left += (int16_t) data[i * orig_channels + j];
} else {
z_right += (int16_t) data[i * orig_channels + j];
}
}
/* mark_buf will always be smaller than the size of data in bytes because orig_channels > channels */
switch_normalize_to_16bit(z_left);
data[mark_buf++] = (int16_t) z_left;
switch_normalize_to_16bit(z_right);
data[mark_buf++] = (int16_t) z_right;
}
}
} else if (orig_channels < channels) {
/* interesting problem... take a give buffer and double up every sample in the buffer without using any other buffer.....
This way beats the other i think bacause there is no malloc but I do have to copy the data twice */
#if 1
uint32_t k = 0, len = samples * orig_channels;
for (i = 0; i < len; i++) {
data[i+len] = data[i];
}
for (i = 0; i < samples; i++) {
for (j = 0; j < channels; j++) {
data[k++] = data[i + samples];
}
}
#else
uint32_t k = 0, len = samples * 2 * orig_channels;
int16_t *orig = NULL;
switch_zmalloc(orig, len);
memcpy(orig, data, len);
for (i = 0; i < samples; i++) {
for (j = 0; j < channels; j++) {
data[k++] = orig[i];
}
}
free(orig);
#endif
}
}
SWITCH_DECLARE(void) switch_change_sln_volume_granular(int16_t *data, uint32_t samples, int32_t vol)
{
double newrate = 0;
// change in dB mapped to ratio for output sample
// computed as (powf(10.0f, (float)(change_in_dB) / 20.0f))
static const double pos[SWITCH_GRANULAR_VOLUME_MAX] = {
1.122018, 1.258925, 1.412538, 1.584893, 1.778279, 1.995262, 2.238721, 2.511887, 2.818383, 3.162278,
3.548134, 3.981072, 4.466835, 5.011872, 5.623413, 6.309574, 7.079458, 7.943282, 8.912509, 10.000000,
11.220183, 12.589254, 14.125375, 15.848933, 17.782795, 19.952621, 22.387213, 25.118862, 28.183832, 31.622776,
35.481335, 39.810719, 44.668358, 50.118729, 56.234131, 63.095726, 70.794586, 79.432816, 89.125107, 100.000000,
112.201836, 125.892517, 141.253784, 158.489334, 177.827942, 199.526215, 223.872070, 251.188705, 281.838318, 316.227753
};
static const double neg[SWITCH_GRANULAR_VOLUME_MAX] = {
0.891251, 0.794328, 0.707946, 0.630957, 0.562341, 0.501187, 0.446684, 0.398107, 0.354813, 0.316228,
0.281838, 0.251189, 0.223872, 0.199526, 0.177828, 0.158489, 0.141254, 0.125893, 0.112202, 0.100000,
0.089125, 0.079433, 0.070795, 0.063096, 0.056234, 0.050119, 0.044668, 0.039811, 0.035481, 0.031623,
0.028184, 0.025119, 0.022387, 0.019953, 0.017783, 0.015849, 0.014125, 0.012589, 0.011220, 0.010000,
0.008913, 0.007943, 0.007079, 0.006310, 0.005623, 0.005012, 0.004467, 0.003981, 0.003548, 0.000000 // NOTE mapped -50 dB ratio to total silence instead of 0.003162
};
const double *chart;
uint32_t i;
if (vol == 0) return;
switch_normalize_volume_granular(vol);
if (vol > 0) {
chart = pos;
} else {
chart = neg;
}
i = abs(vol) - 1;
switch_assert(i < SWITCH_GRANULAR_VOLUME_MAX);
newrate = chart[i];
if (newrate) {
int32_t tmp;
uint32_t x;
int16_t *fp = data;
for (x = 0; x < samples; x++) {
tmp = (int32_t) (fp[x] * newrate);
switch_normalize_to_16bit(tmp);
fp[x] = (int16_t) tmp;
}
} else {
memset(data, 0, samples * 2);
}
}
SWITCH_DECLARE(void) switch_change_sln_volume(int16_t *data, uint32_t samples, int32_t vol)
{
double newrate = 0;
double pos[4] = {1.3, 2.3, 3.3, 4.3};
double neg[4] = {.80, .60, .40, .20};
double *chart;
uint32_t i;
if (vol == 0) return;
switch_normalize_volume(vol);
if (vol > 0) {
chart = pos;
} else {
chart = neg;
}
i = abs(vol) - 1;
switch_assert(i < 4);
newrate = chart[i];
if (newrate) {
int32_t tmp;
uint32_t x;
int16_t *fp = data;
for (x = 0; x < samples; x++) {
tmp = (int32_t) (fp[x] * newrate);
switch_normalize_to_16bit(tmp);
fp[x] = (int16_t) tmp;
}
}
}
struct switch_agc_s {
switch_memory_pool_t *pool;
uint32_t energy_avg;
uint32_t margin;
uint32_t change_factor;
char *token;
int vol;
uint32_t score;
uint32_t score_count;
uint32_t score_sum;
uint32_t score_avg;
uint32_t score_over;
uint32_t score_under;
uint32_t period_len;
uint32_t low_energy_point;
};
SWITCH_DECLARE(void) switch_agc_set(switch_agc_t *agc, uint32_t energy_avg,
uint32_t low_energy_point, uint32_t margin, uint32_t change_factor, uint32_t period_len)
{
agc->energy_avg = energy_avg;
agc->margin = margin;
agc->change_factor = change_factor;
agc->period_len = period_len;
agc->low_energy_point = low_energy_point;
agc->score = 0;
agc->score_count = 0;
agc->score_sum = 0;
agc->score_avg = 0;
agc->score_over = 0;
agc->score_under = 0;
}
SWITCH_DECLARE(switch_status_t) switch_agc_create(switch_agc_t **agcP, uint32_t energy_avg,
uint32_t low_energy_point, uint32_t margin, uint32_t change_factor, uint32_t period_len)
{
switch_agc_t *agc;
switch_memory_pool_t *pool;
char id[80] = "";
switch_assert(agcP);
switch_core_new_memory_pool(&pool);
agc = switch_core_alloc(pool, sizeof(*agc));
agc->pool = pool;
switch_agc_set(agc, energy_avg, low_energy_point, margin, change_factor, period_len);
switch_snprintf(id, sizeof(id), "%p", (void *)agc);
switch_agc_set_token(agc, id);
*agcP = agc;
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(void) switch_agc_destroy(switch_agc_t **agcP)
{
switch_agc_t *agc;
switch_assert(agcP);
agc = *agcP;
*agcP = NULL;
if (agc) {
switch_memory_pool_t *pool = agc->pool;
switch_core_destroy_memory_pool(&pool);
}
}
SWITCH_DECLARE(void) switch_agc_set_energy_avg(switch_agc_t *agc, uint32_t energy_avg)
{
switch_assert(agc);
agc->energy_avg = energy_avg;
}
SWITCH_DECLARE(void) switch_agc_set_energy_low(switch_agc_t *agc, uint32_t low_energy_point)
{
switch_assert(agc);
agc->low_energy_point = low_energy_point;
}
SWITCH_DECLARE(void) switch_agc_set_token(switch_agc_t *agc, const char *token)
{
agc->token = switch_core_strdup(agc->pool, token);
}
SWITCH_DECLARE(switch_status_t) switch_agc_feed(switch_agc_t *agc, int16_t *data, uint32_t samples, uint32_t channels)
{
if (!channels) channels = 1;
if (agc->vol) {
switch_change_sln_volume_granular(data, samples * channels, agc->vol);
}
if (agc->energy_avg) {
uint32_t energy = 0;
int i;
for (i = 0; i < samples * channels; i++) {
energy += abs(data[i]);
}
if (samples) {
agc->score = energy / samples * channels;
}
agc->score_sum += agc->score;
agc->score_count++;
if (agc->score_count > agc->period_len) {
agc->score_avg = (int)((double)agc->score_sum / agc->score_count);
agc->score_count = 0;
agc->score_sum = 0;
if (agc->score_avg > agc->energy_avg) {
if (agc->score_avg - agc->energy_avg > agc->margin) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG1, "[%s] OVER++ SCORE AVG: %d ENERGY AVG: %d MARGIN: %d\n",
agc->token, agc->score_avg, agc->energy_avg, agc->margin);
agc->score_over++;
} else {
agc->score_over = 0;
}
} else {
agc->score_over = 0;
}
if (agc->score_avg < agc->low_energy_point) {
agc->score_under = agc->change_factor + 1;
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG1, "[%s] BELOW LOW POINT, SCORE AVG: %d ENERGY AVG: %d MARGIN: %d\n",
agc->token, agc->score_avg, agc->energy_avg, agc->margin);
} else if (((agc->score_avg < agc->energy_avg) && (agc->energy_avg - agc->score_avg > agc->margin))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG1, "[%s] UNDER++ SCORE AVG: %d ENERGY AVG: %d MARGIN: %d\n",
agc->token, agc->score_avg, agc->energy_avg, agc->margin);
agc->score_under++;
} else {
agc->score_under = 0;
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG1, "[%s] AVG %d over: %d under: %d\n",
agc->token, agc->score_avg, agc->score_over, agc->score_under);
if (agc->score_over > agc->change_factor) {
agc->vol--;
switch_normalize_volume_granular(agc->vol);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG1, "[%s] VOL DOWN %d\n", agc->token, agc->vol);
//agc->score_over = 0;
} else if (agc->score_under > agc->change_factor) {
agc->vol++;
switch_normalize_volume_granular(agc->vol);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG1, "[%s] VOL UP %d\n", agc->token, agc->vol);
//agc->score_under = 0;
}
}
}
return SWITCH_STATUS_SUCCESS;
}
/* For Emacs:
* Local Variables:
* mode:c
* indent-tabs-mode:t
* tab-width:4
* c-basic-offset:4
* End:
* For VIM:
* vim:set softtabstop=4 shiftwidth=4 tabstop=4 noet:
*/